TRECRNICAL MANUAL

FM-10H'3 10KW FM 'IKANSMILIIER

HARRIS
 - GATES DIVISION
 Harrim Intirlypo Copporation

WARRANTY

Seller warrants new equipment manufactured by Gates Division of Harris Intertype Corporation against defects in material or workmanship at the time for delivery thereof, that develop under normal use within a period of one year (6 months on moving parts) from the date of shipment, of which Purchaser gives Seller piompt written notice. Other manufacturers' equipment, if any, including electron tubes, and towers shall carry only such manufacturers' siandard warranty.

Seller's sole responsibility for any breach of the foregoing provision of this contract, with respect to any equipment or parts not conforming to the warranty or the description herein contained, is at its option, (a) to repair or replace such equipment or parts upon the return there f f.o.b. Seller's factory within the period aforesaid, or (b) to accept the return thereof f.o.b. Purchasers's point of installation, whereupon Seller shall either (1) issue a credit to Purchaser's account hereunder in an amount equal to an equitable portion of the total contract price, without interest, or (2) if the total contract price has been paid, refund to Purchaser an equitable partion thereof, without interest.

If the Equipment is described as used, it is sold as is and where is. If the contract covers equipment not owned by Seller at this date it is sold subject to Seller's acquisition of possession and title.

Seller assumes no responsibility for design characteristics of special equipment manufactured to specifications supplied by or on behalf of Purchaser.

Seller shall not be liable for any expense whether for repairs, replacements, material, service or orherwise, incurred by Purchaser or modifications made by Purchaser to the Equipment without prior written consent of Seller.

> EXCEPT AS SET FORTH HEREIN, AND EXCEPT AS TO TITLE, THERE ARE NO WARRANTIES, OR ANY AFFIRMATIONS OF FACT OR PROMISES BY SELLER, WITH REFERENCE TO THE EQUIPMENT, OR TO MERCHANTABILITY, INFRINGEMENT, OR OTHERWISE, WHICH EXTEND BEYOND THE DESCRIPTION OF THE EQUIPMENT ON THE FACE HEREOF.

RETURNS AND EXCHANGES

Do not return anymerchandise without our written approval and Return Authorization. We will provide special shipping instructions and a code number that will assure proper handling and prompt issuance of credit. Please furnish complete details as to circumstances and reasons when requesting return of merchandise. Custom built equipment or merchandise specially ordered for you is not returnable. Where return is at the request of, or for the convenience of the customer, a restocking fee of 15% will be charged. All returned merchandise must be sent freight prepaid and properly insured by the customer. When writing to Gates Division of Harris Intertype Corporation obout your order, it will be helpful if you specify the Gates Factory Order Number or Invoice Number.

WARRANTY ADJUSTMENTS

In the event of equipment failure during the warranty period, replacement or repair parts may be provided in accordance with the provisions of the Gates Warranty. In most cases you will be required to return the defective merchandise or part to Gates f.o.b. Quincy, Illinois for replacement or repair. Cost of repair parts or replacement merchandise will be billed to your account at the time of shipment and compensating credit will be is sued tooffset the charge when the defective items are returned.

MODIFICATIONS

Gates reserves the right to modify the design and specifications of the equipment shown in this manual without notice or to withdraw any item from sale provided, however, that any modifications shall not adversely affect the performance of the equipment so modified.

DAMAGES AND RISK OF LOSS

Purchaser assumes all responsibility for and risk of loss of, or damage to, the Equipment upon delivery at Seller's shipping point, notwithstanding the fact that Seller may have selected the carrier.

In no event shall Seller be liable under any provision of this contract for loss of business or of anticipated profits by Purchaser, outlays by Purchaser in anticipation of business, other incidental or consequential damages on account of negligence.

Purchaser agrees to indemnify Seller against all claims, whether on accaunt of negligence or otherwise, except those asserted by Seller's employees, arising out of or resulting from the erection, operation or use of the Equipment.

INSTRUCTION BOOK ADDENDUM

EQUIPMENT: FM10H3
I. B. NO. 888- 1070-001 \qquad

89293
DATE: \qquad 1-18-74

It has always been the policy of the Gates Radio Company to give our customers the advantage of the latest product improvements. This addendum insures you that the latest improvements have been incorporated in your equipment. This way we can provide up to date information without a delay due to printing new instruction manuals.

Please make the necessary corrections as listed below. Please use ink for a permanent record.
This addendum may be removed after corrections have been made.
Thank you for your cooperation.

Page/Drawing No.	Changes
	R53 changed from 100 ohm, 1 watt to 51 ohm, 1 watt for proper operation of the P.A.Overload. The screen bypassing has been increased to 5500 pf. A $8 \mathrm{mfd}, 4 \mathrm{KV}$ capacitor was added from the PA screen to grid. Full winding used on $T 3$ secondary of Bias supply. R40 was changed to (2) 1000 ohm, 10 watt resistors in parallel. A 8 mfd , 4 KV capacitor was added in parallel with C 44. R47 was changed to 10 K ohm, 225 watt for TPO of 8000 watts. 6 K ohm, tap used on R 45 for TPO of 8000 watts. A 2 K ohm, 20 watt resistor was added from R 26 to ground. R39 in the AFC Unit changed to 750 ohm, 1 watt resistor.

INSTRUCTIONS FOR INSTALLING AND OPERATION OF
 GATES FM-10H3-10 kW FM TRANSMITTER

SAFETY NOTICE

WARNING: THE CURRENTS AND VOLTAGES IN THIS EQUIPMENT ARE DANGEROUS AND UNDER CERTAIN CONDITIONS, COULD BE FATAL.

This Manual is intended as general guidance for trained and qualified installation, operating, maintenance and service personnel who are familiar with and aware of the dangers inherent to handling potentially hazardous electrical and/or electronic circuits. It is not intended to contain a complete statement of all safety precautions which should be observed by personnel in using this or other electronic equipment.

THE INSTALIATION, OPERATION, MAINTENANCE AND SERVICING OF THIS EQUIPMENT INVOLVES RISKS TO BOTH PERSONNEL AND EQUIPMENT, AND MUST BE PERFORMED ONLY BY PROPERLY TRAINED AND EXPERIENCED PERSONNEL EXERCISING DUE CARE. PERSONNEL MUST FAMILIARIZE THEMSELVES WITH SAFETY REQUIREMENTS, SAFE HANDLING AND OPERATING PRACTICE, AND RELATED FIRST-AID PROCEDURES (E.G., FOR ELECTRICAL BURNS AND EIECTRICAL SHOCK).

Gates shall not be responsible for injury or damage resulting from improper installation, operation, maintenance or servicing, or from the use of improperly trained or inexperienced personnel in the performance of such tasks, or from the failure of persons engaged in such tasks to exercise due care.

As with all electronic equipment, care should be taken to avoid electrical shock in all circuits where substantial currents or voltages may be present, either thru design or short circuit. Caution should also be observed in lifting and hoisting equipment, especially regarding large structures, during installation.

LIABILITY LIMITATION

The procedures outlined in this Manual are based on the information available at the time of publication and should permit the specified use with minimum risk. However, the manufacturer cannot assume liability with respect to technical application of the contents and shall, under no circumstances, be responsible for damage or injury (whether to person or property) resulting from its use.

The manufacturer is specifically not liable for any damage or injury arising out of failure to follow the instructions in this Manual or failure to exercise due care and caution during installation, operation, maintenance and service of this equipment.

CAUTIONARY NOTICE

Always disconnect power before opening covers, doors, enclosures, gates, panels or shields. Always use grounding sticks and short out high voltage points before servicing. Never make internal adjustments, perform maintenance or service when alone or when tired.

Never remove, short-circuit or tamper with interlock switches on access covers, doors, enclosures, gates, panels or shields. Keep away from live circuits, know your equipment and don't take chances. Proper training of experienced personnel and observing the above guidelines will help assure safe and continued operation of this equipment.

TABLE OF CONTENTS

SECTION PAGE
1.0 GENERALDESCRIPTION 1-1
1.1 Warranty and Safety Notice $1-1$
1.2 Purpose of Book 1-1
1.3 Purpose of Equipment 1-1
1.4 Description 1-1
1.5 Technical Data 1-2
1.6 Vacuum Tube Table 1-3
2.0 INSTALLATION 2-12.22.32.42.5
2.1
2-1
2-1
Inspection
Inspection
2-1
2-1
Tube Handling and Operation Precautions
Tube Handling and Operation Precautions
2-1
2-1
Installation 2-2
Wiring Connection 2-3
Cooling 2-4
OPERATION 3.0 3-13.13.2Pre-Operation3.3Test Data3-1
Adjustment3-1
3.4 Maintenance 3-3
4.0 CIRCUIT DESCRIPTION 4-1
4.1 4-14.24.34.44.5
IPA 4-1
Exciter 4-2
Power Supply 4-2
4.6 Metering 4-3Control Circuits4-2
5.0 ADDITIONAL INFORMATION 5.1
5.1 Remote Control 5-15.2
5.3 Second Harmonic Filter 5-1Stereophonic Operation5-1
6.0 PARTS LIST 6-1

7.0 ILLUSTRATIONS

Block Diagram 8146639001

PA Efficiency Curve 8141920001
PA Coarse Tuning 8141733001
Installation Details 8381602001
Low Pass Filter 8148556001
2nd Harmonic Filter 8148554001
Overall Schematic 8526711001

8.0
 FM EXCITER

SECTION 1-GENERAL DESCRIPTION

1.1 WARRANTY AND SAFETY NOTICE

This equipment is guaranteed under the liberal Gates Warranty, terms and conditions of which are explained in the standard Gates Warranty which is printed inside the front cover of this manual.

Most Gates manufactured items are guaranteed for one year, with the exception of tubes and moving parts, which are subject to specific warranties based upon hours of usage. The Warranty does not extend to "no charge" service in the field.

Switch to Safety - This equipment employs voltages which are dangerous and may prove fatal if contacted by operating personnel. Extreme caution should be exercised when working with the equipment. Observe safety regulations: Do not change tubes or make adjustments inside equipment with any voltages ON. While your Gates transmitter is fully interlocked you should not rely on the interlock switches for removing high operating voltages. It is always best to disconnect the primary power at the building wall switch and discharge all capacitors with the grounding stick provided.
1.2 PURPOSE OF BOOK

This instruction book has been prepared to assist in the installation, operation, and maintenance of the Gates FM-10H3 10 kW FM transmitter.

1.3 PURPOSE OF EQU.IPMENT

The Gates $\mathrm{FM}-10 \mathrm{H} 3$ is an FM broadcast transmitter with 10 kW watts output delivered to the transmission line. The operating frequency is $88-108 \mathrm{MHz}$. with characteristics exceeding those required by the Federal Communications Commission for standard FM broadcast service. The transmitter is designed for continuous broadcast operation and consists of the exciter, intermediate power amplifier, and the power amplifier, plus their associated power supplies.

DESCRIPTION

Only one cabinet is required to house the entire transmitter. This cabinet is $42^{\prime \prime}$ wide $\times 78^{\prime \prime}$ high $\times 32-3 / 4^{\prime \prime}$ deep. All necessary metering is provided by four meters located on a meter panel at the top of the cabinet. Ready access to the complete transmitter is accomplished by a removable rear door, a hinged access panel, and a drop cover of the exciter unit.

Front doors are provided to offer a pleasing and symmetrical front view appearance. The following controls are located on the front panel:

(a)	Filament ON
(b)	Filament OFF
(c)	Plate ON
(d)	Plate OFF
(e)	Multimeter Selector
(f)	VSWR Cal
(g)	PWR Cal
(h)	FOR PWR/VSWR CAL/VSWR Selector
(i)	IPA Screen Control
(j)	PA Screen Raise/Lower Control
(k)	PA Filament Control

(1) Remote/Local Switch
(m) PA Plate Tuning Control
(n) PA Output Loading Control
(p) IPA Plate Tuning Control
(r) Plus Five (5) Potentiometers for adjustment of PA Plate Current Remote Reading, Recycle Adjustment, IPA Overload, PA Plate Voltage Remote Reading, PA Overload

Power Output:
Frequency Range:
RF Output Impedance:
Output Termination:
Frequency Stability:
Harmonic Attenuation:
Modulation Capability:
Audio Input Impedance:
Audio Input Level:
Audio Frequency Response:
Audio Distortion:
FM Noise Level:
AM Noise Level:

Power Source:

Input AC Power Requirement:
Power Line Variation (Slow):
Power Factor:
Altitude:
Ambient Temperature Range:
Maximum VSWR
Overall Cabinet Size:
Weight:
Front Door Swing:

* $32 \frac{3}{4}{ }^{\prime \prime}$ is overall depth dimension. With rear door, front door handles, and meter, trim strip removed minimum depth is $2934^{\prime \prime}$.

1.6 VACUUM TUBE TABLE

The following tubes are employed in the transmitter:

SYMBOL	TUBE TYPE	FUNCTION
V-2	$4 \mathrm{C} \times 300 \mathrm{~A}$	Intermediate
V-1	4C×10,000D	

SECTION $2 \cdot$ INSTALLATION

2.1 INSPECTION

The FM-10H3 is carefully packed at the Gates plant to ensure safe arrival at its destination. The equipment is packed in a number of heavy cartons and wooden crates. Open the crates and cartons carefully to avoid damaging any of the contents. Remove the packing material and search for possible small items, such as pilot lights, fuses, loose screws, and bolts.

If damage should occur during shipment, all claims should be filed promptly with the transportation company. If a claim is to be filed, the original packing case and material must be preserved. A damage report must be filed to collect for shipping damages. Gates Radio Company is not responsible for damage occuring during shipment. Parts or components shipped to replace those damaged in transportation will be billed to the customer plus transportation expenses, the cost of which should form a portion of your claim to the transportation company.

A complete visual inspection should be made of the equipment. Determine that there are no loose connections, loose components, broken insulators, etc., that may have been damaged in shipment. Make sure all relay contacts are free and in good mechanical condition. Make sure all mechanical connections are tight. Check with a screw driver or a wrench, all mechanical and electrical connections that are mechanically bolted together. All tie downs or blocking used for shipping purposes should be removed. A good overall visual inspection may save time and trouble in placing the transmitter into operating condition.
2.2 TUBE HANDLING AND OPERATING PRECAUTIONS, 4CX10,000D

Avoid bumping this tube. Due to its large mass, bumping this tube will introduce resultant stresses which may cause internal damage.

Before operating this tube, please refer to the tune-up and operating procedure given in Section 3. It is recommended procedure to adjust the equipment for operation under heavy plate loading conditions, and with only sufficient RF drive to provide the required power output and efficiency.

Extreme care should be taken during tune-up as well as in regular service to avoid, even momentarily, operation of this tube under conditions of insufficient plate loading or excessive RF drive. These operating conditions, especially at the upper end of the VHF range, will produce excessivcly high seal and/or bulb temperature and will result in damage to this tube.

2.3 PACKING CHECK LIST

Certain components of the transmitter have been removed for shipment and are packed separately to ensure safe handling. These parts on the FM-10H3 have been kept to a bare minimum and are plug-in units and heavy components. Tubes that are not clamped down for normal operation are also removed. The following components have been removed from the transmitter for shipping purposes:

Quantity		Part Number	
			Description
1	8139383001		Exhaust Tubing and O Rings (IPA)
1	3740014000		Tube, 4CX300A

Quantity	Part Number	Description
1	3740077000	Tube, 4CX10,000D
1	5240029000	Capacitor, plug-in, C42
1 Assy.	9423928002	Notch Filter \& RF Balun Assembly
1 Assy.	9921600001	Low Pass Filter
1	4720410000	Power Transformer, T4

As various components are removed, the wires connecting each component are numbered or tagged for placement of these parts. After determining that all these components are on hand, you are ready to proceed with the installation in an orderly manner.
2.4

In advance of actual placement of the equipment, certain planning should be accomplished. The use of the installation drawing will assist in locating the power and audio input terminals of the transmitter.

Either side of the transmitter may be placed against a wall or other equipment. Complete accessibility for maintenance and installation is provided in the FM-10H3 by access from the front or the rear of the transmitter cabinet. Install the plug-in capacitor in the transmitter bias supply.

Refer to the FM Exciter Installation Instructions for proper module placement in the exciter cabinet.

Unblock the blower assembly.
Mount the power transformer (T4) through the back door of the transmitter. It would be wise to remove the ceramic fuse block temporarily when doing this to prevent accidental damage to this part. Orient the transformer so that the secondary taps on the coils face inward. Connect the primary power leads from contactor, K2 to marked terminals at the top of T4. Select the proper taps on the power transformer T4 for the primary line voltage. Secondary leads are tagged for connection to their proper taps on the coils.

The RF output balun assembly installs from inside the transmitter enclosure. Before mounting, temporarily remove both monitor coupling loops from the top portion of the balun. With the inner conductor removed and the balun sleeve up, bolt the unit beneath the top of the enclosure. Insert the inner conductor from the top.

Take the notch filter and thread the stud from the balun inner conductor into the inner conductor of the notch filter. Tighten with a crescent wrench from the loading capacitor connection in the PA enclosure. Slip the filter sleeve down over the outer conductor and fasten securely with the stainless steel clamp provided.

Remount the two monitor coupling loops on the exterior vertical balun.
The lower end of the inner conductor of the balun connects to output loading capacitor $\mathrm{C}-6$.

Loosen the Allen set screws on the adjustable portion of the balun. The distance that this component is positioned vertically from the tube deck varies with operating frequency. Refer to your test data sheets for the proper measurement on your assigned channel. This adjustment must be accurate within $1 / 8^{\prime \prime}$ for proper operation.

The 4CX300A IPA tube has a breechblock base. The tube must be carefully installed to prevent damage to the contacts of the tube or its socket. The tube must be seated over the center rod of the tube socket and positioned in such a way that the tube electrode rings are in line with the socket fingers. After the tube is pushed downward to the proper position, rotate the tube until all the electrode rings have completely slipped between their associated socket fingers.

Install the anode connector around the anode and tighten securely. Drop the exhaust tube through the opening of the upper deck to the top of the IPA anode connector. Hold the exhaust tube in place with O rings above and below the cleck surface.

Install the $4 \mathrm{CX} 10,000 \mathrm{D}$ carefully in its socket and push firmly until the tube is properly seated. The anode connector assembly secures with a clamp to the tube and with a bolt to the plate line. Coarse frequency tuning of the plate circuit is determined by the distance of the rotary section of the plate circuit from the 4CX10,000D tube deck. This measurement is recorded in the test data for your transmitter and should be checked before operating the transmitter. Tolerance here is approximately $1 / 16^{\prime \prime}$.

Bolt the low pass filter in the transmission line between the directional coupler and antenna coax, and your basic installation is complete. Provisions should be made at the transmitter site to have at least two supports for the filter.

2.5 WIRING CONNECTION

After the transmitter is physically in place and the components removed for shipment have been re-installed, AC power should be brought to the transmitter. The power leads from the transmitter shouid come from a low reactance power source of either 208; 230 , or 240 volts, $60 \mathrm{~Hz}, 3$ phase, with approximately a 21 kVA capacity. A power source of .115 volts, 60 Hz , with 500 watts capacity is also required.

Referring to the installation drawing, the 240 Volt, 3 phase input enters the transmitter in the lower right hand corner and connects to the 3 phase fuse block immediately to the left.

A 115 Volt, single phase fuse block is located at the center and to the rear of the transmitter with the input terminals for the 115 Volts, single phase towards the rear of the transmitter.

The audio input line enters the base of the transmitter at the center approximately $7 \frac{1}{2}{ }^{\prime \prime}$ from the front. The audio line connects directly to terminal board TB-1 of the FM Exciter. Terminals 1 and 3 are the audio input and terminal 2 is ground or shield connection. If stereo is used the lines are connected in accordance with the M6533 Stereo Generator instructions.

The conduit or wiring of the power leads should be in agreement with local electric codes and be able to carry the power requirements of the transmitter. Power leads and program leads should not be run in the same conduit or in the same wiring duct. If, due to necessity, the program leads are in close proximity to the power leads, the program leads should be separately shielded.

A good ground at these FM frequencies is mandatory in keeping RF currents in nearby audio equipment to a minimum. RF usually shows up in one of two ways -- feedback or high noise, and in some cases looth. It should be pointed out that even a small amount of unshielded wire makes a very efficient antemna for FM frequencies. If RF from the cabinet field is transferred to the audio equipment, it is rectified and shows up as noise or feedback. We strongly recommend a single common ground point from the transmitter base to a good grounding system, such as, a water pipe or actual earthing ground.

COOLING
The transmitter is air cooled and several kilowatts of heat are developed and dissipated through the air outlet in the top of the transmitter. It may be necessary to provide a means of exhausting this air from the transmitter room or enclosure. Heat is a major factor to electronic component deterioration. A good system of removing the heated air from the transmitter and the transmitter room and providing cool air for the air inlet of the transmitter will greatly prolong the life of the transmitter and its components. Duct work, if installed, should not provide any back pressure to the power amplifier enclosure. At no point should the duct work have less of a cross sectional area than the opening at the top of the transmitter. Sharp, right angle bends are not permissible. Where it is necessary to turn a right angle, a radius type bend should be used.

There are many installation possibilities. Each and every installation is somewhat different. Therefore, it is not possible to give complete detailed information on the transmitter ducting. Only general information can be supplied: As a suggestion, contact a local heating and cooling contractor for a detailed analysis of the problem.

After the transmitter has operated at full output a number of hours, a temperature rise inside.the transmitter must not exceed a rise of $20^{\circ} \mathrm{C}$ above the ambient measured at the air intake of the blower and must not rise above $60^{\circ} \mathrm{C}$ under any circumstances (excluding PA output air).
$20^{\circ} \mathrm{C}=68^{\circ} \mathrm{F}, 60^{\circ} \mathrm{C}=140^{\circ} \mathrm{F}$

SECTION 3 - OPERATION

3.1 PRE-OPERATION

Before placing the FM-10H3 into operation, check once again the points covered in Section 2. Have you mounted all components physically and made these electrical connections?

1. Primary power to the 3 phase fuse block.
2. 115 Volts to the 1 phase fuse block.
3. Program line connected to the exciter.
4. 115 Volts to the exciter.
5. Transmitter connected to antenna or a suitable load.

If everything appears to be in order, then you may proceed.
3.2 TEST DATA

Your equipment has gone through many different kinds of tests at the Gates factory, and has been operated for several hours on your assigned operating frequency. This is to ensure correct adjustment and proper setting of all controls. Refer to the test data supplied with your transmitter. This data is attached to the front of the transmitter when shipped.

$3.3 \quad$ ADJUSTMENT

Set the dial settings to those given on the test data sheet. Turn the IPA screen voltage control fully counter-clockwise. Primary power may now be applied to the transmitter by pushing the filament ON button. The light behind the filament ON button should light. Next, the blower should begin to run and come up to speed. After the blower reaches maximum operating speed, air pressure in the PA enclosure will operate the air switch.

Run the PA screen voltage control to the lowest position (counterclockwise) on the screen rheostat.

Check the P.A. bias voltage and adjust as necessary to obtain the test data sheet measurements. During the tune-up procedure it may be necessary to increase the bias voltage to prevent the P.A. from drawing excessive plate current. The grid bias voltage on the P.A. is a combination of the developed bias from the RF and the constant voltage from the bias supply. The bias supply is set at a compromise position to obtain the desired power output and to keep the P.A. within its dissipation ratings in case of RF failure.

Closing of the air switch will turn ON the PA filament voltage which may be read with the multimeter switch on the meter panel in the filament voltage position. Set the filament voltage for 7.5 volts. (4 at-ku............... t_{i}
Next, place the multimeter switch on the meter panel to theipa cathode current position (this is the UP position). If the exciter is delivering power to the IPA stage, a reading of approximately 10% will be read on the multimeter. As this meter is reading cathode current it will also read the grid current.

The high voltage may now be applied by pushing the high voltage ON button. This supplies plate and screen voltage to the IPA stage simultancously with the application of plate and screen voltage to the power amplifier staye. Bring the

- screen control for the IPA up until the IPA cathode draws approximately 50% scale reading on the multimeter. Resonate the IPA plate circuit by tuning for a dip in the IPA cathode meter reading. If the plate circuit and loading are near their operating positions, power output of the amplifier will be noticed.

During the tune-up procedure it may be necessary to increase the IPA screen voltage to prevent the P.A. from drawing excessive plate current.

Increase the screen voltage of the power amplifier by bringing the screen control lever switch to the UP position until approximately 1.5 amperes power amplifier plate current is indicated. Resonate the plate circuit of the power amplifier by adjusting the plate tuning (L2) for a dip in plate current. Next, check the position of the output loading by rotating the output loading control to give a maximum output indication.

The power output meter is the farthest right hand meter on the meter panel. Its function is determined by the FOR PWR/VSWR CAL/VSWR Selector switch (S1) located on the upper portion of the access door. You may read:

1. Forward power.

2. Meter calibration for maximum scale reading during VSWR measurements. 3. VSWR on the transmittion line.

Check the VSWR on the transmission line. Position the Power/VSWR Selector to the VSWR Calibrate position and set the power output meter for full sçale deflection with the VSWR CAL control. Turn the selector switch to VSWR and read the reflected wave. Although the transmitter will operate into a 1.7:1 mismatch it is recommended to keep the VSWR to a minimum. If a high VSWR is noticed it is generally traced to the transmission line and/or antenna problems.

Since the transmitter was checked into a 50 ohm resistive load any system with a mismatch will probably change the tuning. Therefore, the recorded test data knob readings may not agree with the actual operation.

If it is $1.5: 1$ or better, the screen voltage of the P.A. and the IPA stage may be increased until both are at maximum or near maximum. The plate tuning, output loading, and IPA plate tuning should be adjusted for the maximum output and the most overall efficient condition. To reduce the RF output, the amount of drive to the PA can be decreased by lowering the screen voltage of the IPA. Also, the output can be reduced by decreasing the PA screen voltage.

The multimeter switch (S10) located on the meter panel will give an indication of the amount of drive to the grid of the PA tube. This is a rolative indication . and is read with the meter switch in the DOWN position. It will be noticed that maximum drive condition will be very close to the same point of the IPA plate current dip. The IPA plate tuning may, at some frequencies and power levels, be different for maximum output and for minimum IPA plate current. A compromise should be made on the plate tuning of the IPA for a IPA cathode current of approximateiy 70% scale reading with a minimum or dip in tuning. The tuning on either side of the dip may affect PA efficiency as well as power output.

The operation of the transmitter is very simple and straight-forward, and once adjusted should require only a nominal amount of touching up the tuning at regular maintenance periods.

The overloads are set for correct operating level at the factory. The IPA plate overload is set for nearly full scale reading on the multimeter. The PA plate overload is set for approximately 2.7 amperes plate current. The adjustments for the overloads are located under a small Cover plate located on the front access door. They may be referred to by symbol numbers on the schematic.

Power output of the transmitter may be increased or decreased by three controls on the transmitter. The first is the output loading. It is best to leave this control set for maximum loading on the amplifier as this will give more stable operation as recommended for any tetrode. The second control is the power amplifier screen voltage. After the loading has been adjusted for maximum power. output the screen voltage may be raised or lowered for the desired operating power. The third control is the IPA screen voltage control. Reducing this to its minimum value will reduce the drive and part of the bias to the final amplifier causing it to overload and trip the plate voltage. It may be operated in its maximum position without any detrimental effects. However, to give partial control to power output and some tolerance on the power output of the IPA stage, it is recommended that it be run at approximately 80% of its full scale setting.

The output of the exciter is adjusted with a output control of the 10 watt amplifier on the exciter and is covered in the FM Exciter section of this manual.

The transmitter can easily be remotely controlled. Description of the connections is covered in Section 5.

Two controls for setting the remote plate voltage and plate current for external metering are located under the cover on the hinged access door and are shown by symbol numbers on the schematic.

The screen voltage of the power amplifier is motor controlled and is also connected to the remote control Raise/Lower function for power output.
3.4 MAINTENANCE

Maintenance of the FM-10H3 should consist of the following:

1. Keeping the transmitter clean.
2. Changing tubes when emission falls off.
3. Checking mechanical connections and fasteners.
4. Lubricating the blower motor.

Keeping the transmitter clean from the accumulation of dust will reduce failure resulting from arcing, dirty relay contacts, and overheating of chokes, resistors, and transformers. Electrostatic fields are "dust catchers". Support insulators in the PA enclosure and other locations are the worse offenders. They must be kept clean and free of all foreign material at all times. If not, arcing may result and the insulator shattered.

The air filter should be clean at all times. The washable air filter used in the back door may be purchased from the Gates Radio Company under Part Number 8275285011 . However, the filter may be cleaned by using warm water and a mild detergent.

Once a month the entire transmitter should be cleaned of dust. The inside of the power amplifier should be thoroughly wiped clean of dust. A small brush, soft rag, and vacuum cleaner can be used very effectively in keeping the equipment clean.

All contactors and relays should be inspected regularly for pitting and dirt. The contacts should be burnished and cleaned if required. The overload relays are telephone type with sealed contacts and should require little attention.

The bearings for the motor of the PA blower are sealed and normally give long trouble free operation. They are lubricated for approximately 20,000 hours of operation. After this period of operation the grease in these bearings should be changed. This is done by taking the drain plug out of the bottom of the bearing and attaching a grease fitting to the upper plug on the bearing. New grease should be applied until clean grease runs out of the drain plug at the bottom. It is suggested the blower be removed for this maintenance.

The PA tube and the IPA tube should be removed once a month and the fins cleaned of dust. Air may be blown through the fins in the reverse direction or the anode cleaned with soap and water or denatured alcohol.

This transmitter is a precision electrical device, and as such, should be kept clean at all times and free of dust and foreign material. Dust and moisture condensation will lead to possible arc overs and short conductive paths.

A good preventive maintenance schedule is always the best assurance for trouble free transmitter operation.

SECTION 4-CIRCUIT DESCRIPTION

The FM-10H3 circuits will be described in the following sections:

Power Amplifier
Intermediate Power Amplifier (IPA)
Exciter
Power Supply
Control Circuits
Metering

4.1 . POWER AMPLIFIER

The power amplifier of the FM-10H3 employs a single 4CX10,000D tetrode in a common cathode amplifier circuit. The plate circuit is inductively tuned by varying a length of inner conductor of a transmission line within the rectangular outer conductor. The plate line is approximately one-half wavelength long, being fore-shortened by the output capacity of the tube.

The large variable portion of the line is used for rough or approximate frequency setting and the end of the half-wave line is made variable for plate circuit tuning. The end is controlled from the front panel. The fine frequency control covers approximately 3 MHz at the low end of the FM band and approximately 6 MHz at the higher end of the band.

Output coupling is accomplished by capacity tuning a balun. The balun inductively couples RF power from the amplifier enclosure.

The PA grid circuit is common with the IPA plate circuit. Output capacitance of tne IPA tube with the IPA variable plate inductance, L6, and the input capacitance of the PA tube form a pi circuit. The position and size of inductor L10, is used to vary the IPA loading. (A small movement of L10 will change the IPA loading appreciably.)

Bypassing of the PA screen and filaments is accomplished by using a number of high voltage ceramic capacitors with lead lengths kept as short as possible.

In some transmitters, especially at the higher operating frequencies, there may be a capacitor connected between grid and cathode of the P.A. This capacitor is usually 25 pF or 50 pF . The purpose of adding this component is to improve the overall performance of the power amplifier.

4.2 IPA

- The intermediate power amplifier employs 4CX300A tetrode in a common cathode circuit. The plate circuit is common with the PA grid as previously explained.

Screen bypassing is effected with the built-in capacitance of the 4CX300A air system socket. The IPA cathode is bypassed with four ceramic button capacitors.

The grid circuit is inductively tuned and sealed at the Gates factory. Since the circuit is several megahertz wide and will not require field adjustment the variable inductors are accessible only with the bottom IPA cover off.

Neutralization has been added to the IPA stage. A sinall stud protruding from a ceramic insulator adjacent to the anode of the tube provides the degenerative feedback pickup. The RF pickup is then returned to the grid input circuit to stabilize the tube's operation. After factory set ling, it will not require further adjustment changes.

4.3 EXCITER

The FM exciter is described in detail in the Exciter section of this instruction book.

4.4 POWER SUPPLY

Only one high voltage power supply is used in the FM-10H3. The basic configuration of the supply is a three phase full wave bridge.

It supplies 6.6 kV for the PA plate, 2.5 kV for the IPA plate, 1000 Volt for the PA screen grid and 280 Volt for the IPA screen grid.

The reduced voltages are obtained from resistor dividers which are connected to the center tap of the transformer.

The PA screen grid voltage is variable between 600 Volt and 1000 Volt and is controlled by the Raise/Lower switch. Series limiting resistor, R47 prevents the PA screen grid from over-dissipating in case the PA has a loss of plate voltage.

The 0 to 280 Volt variable supply for the IPA screen voltage is controlled by R-20.

Silicon rectitiers for this supply consists of three doublers, each containing a number of diodes in series with proper resistors and capacitors across the diodes. The diodes are mounted in copper heat sinks.

The PA bias supply is a single phase full wave bridge circuit using silicon rectifiers. Grid bias between 125 and 225 Volts is supplied to the PA control grid. The bleeder resistor across the supply, R-41, will also provide additional bias voltage if the PA grid current due to RF drive causes grid current to flow above 40 mA with 160 Volts fixed bias. R-39 is the bias adjust control.

4.5 CONTROL CIRCUITS

The control circuits of the FM-10H3 consist of the following:
K1 - Primary Contactor - Applies voltage to the blower, PA bias supply, and the IPA filaments.

K2 - Plate Contactor - Applies primary voltage to the plate transformer. (K2 is energized after K3 closes.)

K3 - Step/Start Contactor - It closes and then K2 is energized, shorting out the contacts of K3 and the 1 ohm resistors. Step/Starting of the high voltage supply is accomplished by K3 closing first and applying voltage to the transformer primary through 1 ohm, resistors, R22, R23, and R24.

K4 - Auxiliary Relay - Applies holding voltages to the Step/Start contactor K3, if the air switch and door interlocks are closed.

K5 - Recycle Relay - Energizes when either the PA overload or IPA overload relay is energized a number of times. The number of times is determined by control R-25. The two overload relay contacts are in series across the relay circuit for K5. When either overload relay energizes and the contacts open, C-36 starts to charge. If the contacts are open for a sufficient length of time for C-36 to charge to the point that the voltage will energize K 5 . The contacts of $K 5$ will break the hold circuit of $K 4$ and the plate voltage will be switched off. If K5 does not operate, the overload contacts will close after an overload and the plate contactor K2 will again energize.

K9 - Underdrive Relay - Will prevent application of plate and screen voltage to the IPA and PA until the grid current of the IPA reaches 8 mA or more. The contacts of K 9 are in series with door interlocks. In case of a plate voltage trip-out due to low IPA grid current the recycle circuit will not operate.

S9 - Air Switch - Closes after the air pressure in the plenum reaches proper pressure, and switches primary voltage to the PA filament transformer.

4.6 METERING

All necessary metering of the $\mathrm{FM}-10 \mathrm{H} 3$ is accomplished with four meters located on the cabinet meter panel.

A multimeter provides the following:
IPA Cathode Current
PA Filament Voltage
PA Drive
A metering rectifier circuit is calibrated at the factory to give PA filament voltage read on the multimeter. A PA drive detector, coupled to the grid circuit, provides a DC voltage to the multimeter to indicate the presence of RF in the PA grid enclosure.

The second meter reads PA plate current and is located in the Plate B+ lead. The meter is properly insulated and isolated behind a protective plexiglass cover.

The third meter reads plate voltaye is located on the low potential side of the meter multiplier resistor.

The fourth meter is for indicating power output and VSWR on the transmission line. This meter works in conjunction with the directional coupler mounted in the output transmission line.

SECTION 5-ADDITIONAL INFORMATION

5.1 REMOTE CONTROL

Remote control facilities are built into the $\mathrm{FM}-10 \mathrm{H} 3$ and require only connection to either the Gates RDC-10AC Remote Control Unit or the Gates RDC.200A Remote Control equipment. The connections to the transmitter are made at TB-6 located in the base of the cabinet. Terminal connections for the functions are shown on the schematic.

The functions are:

1. Fail-Safe, Filament ON-OFF.
2. Momentary ON-OFF for plate voltage.
3. Raise-Lower for adjusting power output.
4. Plate voltage metering.
5. Plate current metering.
6. RF power output metering.

5.2 STEREOPHONIC OPERATION

Provision has been provided for the installation of the Gates M6533 Stereo Generator in the FM Exciter. Instructions for audio connections are given . in the exciter section of.this instruction book.

With the addition of the M6533 Stereo Generator the transmitter is FCC type accepted for stereophonic operation.

5.3 SECOND HARMONIC FILTER

Upon completion of installation of the transmitter a check should be made on the tightness of the Allen set screws at the adjustment end of the second harmonic trap. There are two set screws that secure the short to the center conductor. If these become loose for any reason and light contact is made between the brass short and the center conductor, heating at this point may occur, resulting in possible burning and eventual destruction of the short and other parts of the filter.

A regular check on the tightness of these screws should be made at six month intervals, as part of the preventive maintenance program for the transmitter.

FM HARMONICS IN THE TV BAND

The sharp upsurge in FM broadcasting has in some instances developed unlooked for interference with local TV reception. In every instance this interference is in so-called fringe areas for TV reception and where the strength of the TV signal is weak enough that outside highly directional home TV antennas are necessary. ---- When this condition develops, the TV viewer quickly learns from his service man that the local FM station is the offender. --_ The FM broadcaster is immediately deluged with requests to eliminate the interference. In some instances CATV (Community Antenna Television) systems are also offended as they pick up weak distant TV stations.
What is the FM broadcaster's responsibility? Answer: To meet FCC rules and regulations as related to harmonic radiation of his $F M$ equipment but not to guarantee perfect TV reception.

Below is a chart showing the picture and sound frequencies of TV stations between Channels 7-13 inclusive. Channels 2-6 are not shown. FM harmonics do not fall in these Channels. In fact, commercial FM station harmonics will affect only Channels 8 and above -- look at the chart.

TV Channel	Picture Frequency B and --Mc-- Sound Frequency	
7	175.25 to 179.50	197.75
8	181.25 to 185.50	185.75
9	187.25 to 191.50	191.75
10	193.25 to 197.50	197.75
11	199.25 to 203.50	203.75
12	205.25 to 209.50	209.75
13	211.25 to 215.50	215.75

The frequency range for commercial FM broadcasting is 92.1 Mc to 107.9 Mc : --- To determine the second harmonic of your FM frequency, just multiply your frequency by 2. Example: If your frequency is 99.9 Mc , multiplied by 2 would make a second harmonic of 199.8 Mc . By consulting the above chart, you will note the second harmonic falls in the picture portion of the TV Channel 11.

Correct FM Harmonic Radiation

The FCC stipulates that transmitters of 3000 watts power and over must have a harmonic attenuation of 80 db . For 1000 watts, 73 db ., and for 250 watts, 66.9 db . All reputable manufacturers design their FM transmitters to meet or exceed these specifications.

Fringe Area TV Strength Versus FM Harmonics

Let's take a typical FM station that radiates 70,000 microvolts per meter at 1 mile. At 80 db . harmonic attenuation (as called for by FCC), this station will radiate approximately 7 microvolts per meter at 1 mile on the second harmonic. In the case of our Channel 11 example, it is estimated that a fringe area TV station from 60 to 90 miles distance would have a signal strength from 5 to 25 microvolts per meter. It can then be easily understood that a 7 microvolt signal, well within FCC specifications, would definitely interfere with the TV signal, yet with the FM broadcaster's equipment performing normally.

This is sometimes further aggravated by the FM station being located between the TV station and the TV receivers. In this instance the TV antennas are focussed not only on the TV station but yotr FM station as well. The home TV antennas are beamed at your legal second harmonic as well as the fringe TV station.

What To Do
When interference occurs, it will develop ragged horizontal lines on the TV picture varying with the FM program content. If the TV sound portion is interfered with (usually not the case), then the FM signal will be heard in addition to the TV sound.

1. It is not up to the FM broadcaster to go on the defensive. He did not put the TV station 75 miles away nor did he select the TV Channel. -..- In most instances the condition is a natural phenomena that neither you, the TV station, nor the FCC can correct.
2. Do not adjust the FM harmonic or "T" notch filters supplied with the FM transmitter. These are factory adjusted and most FM stations do not have the expensive equipment necessary for correct adjustment. Tampering with this calibrated adjustment will probably make the condition worse.
3. Do not rely on TV service men's types of measuring equipment. They are not built to accurately measure harmonics and invariably give erroneous readings that invite the CATV or local service men's association to say "I told you so. ${ }^{\prime}$. Remember it is difficult to radiate harmonics if the equipment is built to suppress the harmonics and it is.
4. In many instances interference may be caused by overloading on the front end of the TV receiver. This problem usually occurs when the receiver is located close to the FM transmitter. This problem can be overcome by installing a trap tuned to the frequency of the FM carrier. The TV service man can and must learn how to do this. In most cases it works, while in some instances, if not properly installed or tuned, it will not completely eliminate the interference. In one case where interference of this type existed, a TV station put traps for the fundamental FM frequency on nearly every TV set in town. Not the FM transmitter.

Summary

The FCC is well acquainted with this nation-wide problem. If TV viewers write FCC, complaining about your FM station, remember the FCC has received a few thousand similar letters. .-... It is not the obligation of the FM broadcaster to assure fringe area reception of a TV station any more than is the obligation of the TV station to assure the FM broadcaster perfect reception in his TV city.

Probably your installation will not have problems as outlined above. If they do exist, don't blame the equipment. Every transmitting device puts out a second harmonic, even the TV stations. The fact that these harmonics legally fall into the spectrum of a TV station many miles distant is coincidental, but not your fault.

SYMBOL NO. GATES STOCK NO. DESCRIPTION

	$\begin{aligned} & \text { A1 } \\ & \text { A2 } \end{aligned}$		Neon I_amp, .25 W. (part of S4) Neon Lamp, 25 W. (part of S5)
	B1	9139392001	$\text { Blower, 1/3 H.P. } 3500 \text { RPM, }$ $115 / 230 \mathrm{~V} .(60 \mathrm{~Hz})$
	B1	4320046000	Blower, 1/3 H.P. 2900 RPM (50 Hz)
	B2	4360013000	Motor, 1 RPM, 115 V . a.c. Fan 3380 RPM 115 V AC $50 / 60 \mathrm{~Hz}$
	C6	5140218000	Cap., Variable, 6-50 pF
	C7	5160233000	Cap., $500 \mathrm{pF} ., 30 \mathrm{kV}$
	C8	5160205000	Cap., 500 pF ., 5 kV
	C9		Same as C8
	C10		Same as C8
	C11		Same as C8
	C12		Same as C8
	C13		Same as C8
	C14		Same as C8
	C15		Same as C8
	C16		Same as C8
	C17		Not Used
	C18	5160206000	Cap., 1000 pF., 5 kV
	C19		Same as C18
	C20		Same as C18
	C21		Same as C18
	C22		Same as C18
	C23		Same as C18.
	C24	5220071000	Cap., 50 uF., 25 V
	C25	5160227000	Cap., Feedthru, 500 pF., 500 V
	C26	5160201000	Cap., 50 pF., 5 kV
	C27	5160250000	Cap., 500 pF., 500 V
	C 28		Same as C27
	C29	5160200000	Cap., $25 \mathrm{pF}, 7.5 \mathrm{kV}$
	C30		Not Used Cap (part of tube socket)
	C32	5000852000	Cap., 1000pF., 500 V
	C33	5160054000	Cap., . 001 UF., 1 kV
	C34		Same as C33
	C35	5160043000	Cap., 470 pF., 1 kV
	C36	5220133000	Cap., 16 uF., 450 V
	C37	5160082000	Cap., . 01 uF., 1 kV
	C38 C39		Same as C37 1000 DF 500 V
	C39 C40	5160450000	Cap., Feedthru, 1000 pF, 500 V Same as C8
	C41		Same as C8
은	C42	5240029000	Cap., plug-in, 80 uF., 450 V
	C43		Not Used
	C44	5100465000	Cap., 8 uF., 4 kV .
	C45		Same as C44
	C46		Same as C44
	C47		Same as C37
	C48		Same as C33
	C49 C 50		Same as C25 Same as C8

SYMBOL NO. GATES STOCK NO. DESCRIPTION

C51	5160396000	Cap., 6200 pF., 10 kV
C52		Same as C51
C53		Same as C51
C54		Same as C7
C55		Not Used
C56	5160210000	Cap., 200 pF., 7.5 kV
C57		Same as C18
C58		Same as C18
C59		Not Used
C60		Not Used
C61		Same as C8

CR2	3860016000
CR3	3840020000
CR4	
CR5	3840134000
CR6	
CR7	

Diode, Zener, 1N2974
Diode, 1N2071
Same as CR3
Diode, 1N914
Same as CR2
Same as CR3

DC1
9273270002
Coupler Unit, 12 kW

F1	3980182000
F2	
F3	3980222000
F4	
F5	
F6	3980213000
F7.	3980017000

Fuse, 10 A., 250 V
Same as F1
Fuse, 60 A., 250 V .
Same as F3
Same as F3
Fuse, 8 A., 250 V
Fuse, 1 A., 250 V
FL1 9921600001

FL2
9423928004

J2
6130237000
J3
J4
6120233000

5700120000
5700088000
K3
K4
K5
5700119000
5740099000
5740054000
K6
5720125000
K7
K8
5720066000
5720052000
Contactor, 4 pole, 110 V. a.c.
Contactor, 3 pole, 230 V .
Contactor, 4 pole, 208/220 V AC
Relay, DPDT, 120 V .
Relay, SPDT
Relay, DPDT, 6 VDC
Same as K6
Relay, DPDT, 6 VDC
Relay, DPDT, 6 VDC

L1	9138288001
L2	9423910001
L3	9274249001
L4	4940004000
L6	

Variable Coupling Section (part of FL2)
Plate Line \& Coupling Ass'y.
Choke, RF, PA Plate
Choke, RF, 7 uH
Same as L4
Coil, IPA Plate (Det. by Freq.)

Coil, IPA Grid Tuning
Coil, IPA Input Loading
Inductor, IPA Neutralizing
Inductor, IPA Plate Loading
Not Used
Not Used
Reactor, Bias, 6 H .
Reactor, H.V. 2 H .
Reactor, H.V. 10 H .
Choke, RF., 2 uH
Same as L16
Same as L4
Same as L4

Multimeter, 0-300 mA $0-10$ V. \& 0-100 Scale Meter, Plate Current 0-5 A Meter, Plate Voltage 0-8 A Meter,\% Pwr. Output/VSWR, 200 uA Movement

Control, 10 K ohm, 2 W
Control, $10 \cdot \mathrm{~K}$ ohm, 2 W
Res., 5 ohm, 50 W
Control, 1 K ohm, 2 W
Res., 51 ohm, 2 W
Same as R9
Res., 3300 ohm, 2 W
Res., 6200 ohm, $1 / 2 \mathrm{~W}$
Res., 10 K ohm, $1 / 2 \mathrm{~W}$
Res., 2400 ohm, $1 / 2 \mathrm{~W}$
Control, 50 ohm, 2 W
Res., 470 ohm, 2 W
Res., $10 \mathrm{ohm}, 2 \mathrm{~W}$
Same as R20
Res., 1 ohm, 25 W
Same as R22
Same as R22
Same as R9
Rheostat, 10 K ohm, 50 W
Res., 1000 ohm 2 W
Same as R11
Control, 100 ohm, 2 W .
SYMBOL NO. GATES STOCK NO. DESCRIPTION

R30	5420058000
R31	5420165000
R32	5480167000
R33	5520380000
R34	5441613000
R35	
R36	
R37	5420209000
R38	5400833000
R39	552 0324000
R40	5400579000
R41	5420218000
R42	
R43	
R44	
R45	5421079000
R46	5520423000
R47	5420368000
R48	9143424001
R49	5420346000
R50	
R51	
R52	5400628000
R53	5400456000
R54	
R55	
R56	9143422001
R57	
R58	5420222000
R59	5420095000
R60	
R61	
R62	
R63	5420309000
R64	

Res., 50 ohm, 10 W
Res., $3 \mathrm{ohm}, 25 \mathrm{~W}$
Res., $16 \mathrm{ohm}, 2 \mathrm{~W}$
Rheostat, 10 ohm, 100 W
Res., 100 ohm, 4 W
Same as R34
Same as R34
Res., 200 ohm, 50 W
Res., 100 ohm, 25 W
Rheostat, 5 K ohm, 25 W
Res., 47 ohm, 2 W
Res., 4 K ohm, 50 W
Not Used
Not Used
Not Used
Res., 10 K ohm, 50 W tapped
Rheostat, 10 K ohm, 150 W
Res., 7.5 K ohm, 200 W
Meter Multiplier, 5 megohm
Res., 100 K ohm, 160 W
Not Used
Same as R11
Res., 5100 ohm, 2 W
Res., $100 \mathrm{ohm}, 1 \mathrm{~W}$
Same as R47
Same as R47
Meter Multiplier, 3 megohm
Same as R47
Res., 7500 ohm, 50 W
Same as R49
Res., 10 K ohm, 10 W
Same as R60
Same as R60
Res., 50 K ohm, 100 W
Same as R63

S1
S2
S3
S4
S5
S6
S7
S8
S9

S10

S11
S12
S13

9149091001
6040196000 6040284000 6040283000 6040286000 6040285000 6040032000

6040258000
6020005000 6020056000 6040052000

Switch, rotary, 3 pole, 3 position
Switch, plunger, SPDT
Switch, pushbutton, N.C.
Switch, pushbutton, N.O.
Switch, pushbutton, N.C.
Switch, pushbutton, N.O.
Switch, toggle, DPDT
Same as S2
Switch, air pressure, N.O.
Switch, lever, 2 pole, 3 position
Switch, lever, 2 pole, 3 position
Switch, lever, SPST
Same as S12

SYMBOL NO.	GATES STOCK NO.	DESCRIPTION
T1	4720409000	Transformer, PA Filament
T2	4720090000	Transformer, IPA Filament
T3	4720052000	Transformer, Bias
T4	4720509000	Transformer, H.V. $(60 \mathrm{~Hz})$
T4	4720576000	Transformer, H.V. $(50 \mathrm{~Hz})$
TB2		Not Used
TB3	6140071000	Terminal Board, 4 terminal
TB4	6140052000	Terminal Board, 8 terminal
TB5	6140114000	Terminal Board, 6 terminal
TB6	6140104000	Terminal Board, 14 terminal
-		
V1	3740077000	Tube, 4C×10,000D
V2	3740014000	Tube, 4CX300A
XC42	404.0016000	Socket, Octal
$\begin{aligned} & \text { XF1-2-6 } \\ & \text { XF3-4-5 } \\ & \text { XF7 } \end{aligned}$	$\begin{aligned} & 4020015000 \\ & 4020087000 \\ & 4020021000 \end{aligned}$	Fuse Block, 3 pole Fuse Block, 3 pole Fuseholder
XV1	4040069000	Socket, tube (4CX10,000D)
XV2	4040074000	Socket, tube (4CX300A)
Z1-Z2	3840299000	Rectifier, H.V. Supply
Z3-Z4		Same as Z1-Z2
Z5-Z6		Same as Z1-Z2
Z7	3840121000	Rectifier, Bias Supply

PARTS LIST

M-4845 RF OUTPUT CURRENT EXTENSION KIT

SYMBOL NO. GATES STOCK NO. DESCRIPTION

C1	5160043000	Cap., $470 \mathrm{pF} ., 1 \mathrm{kV}$
C2	5160054000	Cap., . $001 \mathrm{uF}, ., 1 \mathrm{kV}$
C3		Same as C2

CR1	3840195000	Diode, 1N914

6120237000
Receptacle, "BNC"

R1	5400594000	Res., 200 ohm, 2 W
R2		Same as R1
R3		Same as R1
R4		Same as R1
R5		Not Used
R6	5500067000	Potentiometer, 10 K ohm
R7	5400070000	Res., 7500 ohm, $1 / 2 \mathrm{~W}$

TB1
6140069000
Terminal Board, 2 terminal

refer to transintters factoby test data for the efficiency factor deteriained on final test

CRAPH-PA EFFICIEMCY
FM-10G

*distance from the pa tube deck to the botton of the rotary section of the plate circuit

SyallinsNyyd Wd

AT FREQUENCIES BELOẂ RESOMANCE THE＂STUB＂APPEARS AS AN INDUCTANCE．

AT FREGUEiCIES ABOVE RESONANCE THE ＂STUS＂APPEARS AS A CAPACITY．

AT THE SECORC HARMONIC FREQUENCY， THE＂STUB＂APPEARS AS A SERIES RESONANT CIRCUIT OR DEAD SHORT．

2nd HARMONIC FILTER－
FM TRANSMITTERS

TECHNICAL MANUAL

TE-3
SOLID STATESMAN
FM EXCITER

SAFETY NOTICE

WARNING: THE CURRENTS AND VOLTAGES IN THIS EQUIPMENT ARE DANGEROUS AND UNDER CERTAIN CONDITIONS, COULD BE FATAL.

This Manual is intended as general guidance for trained and qualified installation, operating, maintenance and service personnel who are familiar with and aware of the dangers inherent to handling potentially hazardous electrical and/or electronic circuits. It is not intended to contain a complete statement of all safety precautions which should be observed by personnel in using this or other electronic equipment.

THE INSTALLATION, OPERATION, MAINTENANCE AND SERVICING OF THIS EQUIPMENT INVOLVES RISKS TO BOTH PERSONNEL AND EQUIPMENT, AND MUST BE PERFORMED ONLY BY PROPERLY TRAINED AND EXPERIENCED PERSONNEL EXERCISING dUE CARE. PERSONNEL MUST FAMILIARIZE THEMSELVES WITH SAFETY REQUIREMENTS, SAFE HANDLING AND OPERATING PRACTICE, AND RELATED FIRST-AID PROCEDURES (E.G., FOR ELECTRICAL BURNS AND ELECTRICAL SHOCK).

Gates shall not be responsible for injury or damage resulting from improper installation, operation, maintenance or servicing, or from the use of improperly trained or inexperienced personnel in the performance of such tasks, or from the failure of persons engaged in such tasks to exercise due care.

As with all electronic equipment, care should be taken to avoid electrical shock in all circuits where substantial currents or voltages may be present, either thru design or short circuit. Caution should also be observed in lifting and hoisting equipment, especially regarding large structures, during installation.

LIABILITY LIMITATION

The procedures outlined in this Manual are based on the information available at the time of publication and should permit the specified use with minimum risk. However, the manufacturer cannot assume liability with respect to technical application of the contents and shall, under no circumstances, be responsible for damage or injury (whether to person or property) resulting from its use.

The manufacturer is specifically not liable for any damage or injury arising out of failure to follow the instructions in this Manual or failure to exercise due care and caution during installation, operation, maintenance and service of this equipment.

CAUTIONARY NOTICE

Always disconnect power before opening covers, doors, enclosures, gates, panels or shields. Always use grounding sticks and short out high voltage points before servicing. Never make internal adjustments, perform maintenance or service when alone or when tired.

Never remove, short-circuit or tamper with interlock switches on access covers, doors, enclosures, gates, panels or shields. Keep away from live circuits, know your equipment and don't take chances. Proper training of experienced personnel and observing the above guidelines will help assure safe and continued operation of this equipment.

TECHNICAL MANUAL
 TE-3 FM EXCITER

INTRODUCTION

This Technical Manual provides the necessary information for the application, installation, operation, adjustment and maintenance of the TE-3 Exciter.

TABLE OF CONTENTS
SECTION PAGE
FRONTISPIECE i
INTRODUCTORY INFORMATION ii
TABLE OF CONTENTS iii
1 DESCRIPTION 1.3
1.1 GENERAL 1-1
1.2 OPTIONAL EQUIPMENT 1-1
1.3 TECHNICAL CHARACTERISTICS 1-1
Fig. 1.1 Front View 1-4
Fig. 1.2 Front View 1-5
Fig. 1.3 Front View 1-6
2 INSTALLATION $2 \cdot 1$
2.1 DAMAGE CLAIM INFORMATION 2-1
2.2 UNPACKING AND INSPECTION 2-1
2.3 UNPACKING CHECK LIST. 2-1
2.4 MECHANICAL DETAILS 2-1
2.5 POWER REQUIREMENTS \& CONNECTION 2-1
2.6 RF OUTPUT CONNECTION 2-2
2.7 ADDITIONAL CONNECTIONS 2-2
Fig. 2.1 Rear View 2-3
3 OPERATION AND ADJUSTMENT 3.1
3.1 FRONT PANEL CONTROLS 3-1
Table $3.1 \quad$ Fuse and Test Point Location 3-1
3.2 TURN-ON PROCEDURE 3-2
3.3 MODULATED OSCILLATOR ADJUSTMENT 3-2
3.4 ALARM CIRCUITS ADJUSTMENT 3-2
3.5 AFC MULTIMETER 3-3
4 THEORY OF OPERATION 4.1
4.1 GENERAL 4-1
4.2 POWER SUPPLY 4-1
4.3 POWER AMPLIFIER 4-1
4.4 AUDIO UNIT 4-1
4.5 MODULATED OSCILLATOR $4-2$
4.6 AUTOMATIC FREOUENCY CONTROL UNIT 4-4
4.7 STEREO GENERATOR 4-6
4.8 SUB-CARRIER GENERATOR 4-7
Fig. 4.1 Internal View Power Supply 4-9
Fig. 4.2 Power Amplifier 4-10
Fig. 4.3 Internal View Modulated Oscillator 4-11
Fig. 4.4 Internal View AFC Unit 4-12
Fig. 4.5 Internal View - Audio Unit 4-13
Fig. 4.6 Internal View - Stereo Generator 4-14
Fig. 4.7 Internal View - SCA Generator. 4-15
5 TROUBLESHOOTING 5-1
5.1 GENERAL 5-1
5.2 NO CARRIER OUTPUT 5-1
5.3 CARRIER OFF FREOUENCY 5-1
5.4 HIGH DISTORTION 5-1
5.5 HIGH NOISE 5-2
5.6 EXCESSIVE CROSSTALK 5-2
5.7 POOR STEREO SEPARATION 5-2
5.8 POWER AMPLIFIER TUNING 5-2
5.9 AUDIO UNIT ALIGNMENT 5-2
5.10 STEREO GENERATOR ALIGNMENT 5-3
5.11 SUB-CARRIER GENERATOR SETTING 5-3
6 PARTS LIST 6-1
6.1 CHASSIS 6-1
6.2 POWER SUPPLY 6-1
6.3 10W POWER AMPLIFIER 6-3
6.4 AUDIO UNIT 6-4
6.5 MODULATED OSCILLATOR 6-5
6.6 AFC UNIT 6-7
6.7 FILTER ASSEMBLY 6.10
6.8 ISOLATION PAD, 3 dB 6-10
6.9 STEREO GENERATOR 6-11
6.10 SCA GENERATOR 6-15
7 DRAWINGS 7-1
Fig. $7.1 \quad$ Block Diagram 7-2
Fig. 7.2 Interconnecting Diagram 7-3
Fig. 7.3 Power Supply 7-4
Fig. 7.4 Modulated Oscillator 7-5
Fig. $7.5 \quad$ AFC Unit 7-6
Fig. $\quad 7.6 \quad 10$ W Amplifier $7-7$
Fig. 7.7 Audio Unit 7-8
Fig. 7.8 SCA Generator 7.9
Fig. 7.9 Stereo Generator 7-10
Fig. 7.10 AT-1 Isolation Pad 7-11

SECTION 1 -DESCRIPTION

1.1 GENERAL

The TE-3 Exciter consists of five basic, interconnected, modular units; Power Supply, Power Amplifier, Modulated Oscillator, Automatic Frequency Control, and Audio Section. See Fig. 1.1.

The frequency range of the exciter is from 87.5 MHz to 108 MHz and it is factory tuned to the customer specified frequency.

The exciter is completely self-contained. The oscillator of the exciter operates at the carrier output frequency eliminating frequency multipliers. This insures improved carrier stability and excellent frequency response when the power level is increased in conjunction with high power transmitters. The output power of the exciter is 10 to 15 watts.
1.2 OPTIONAL EQUIPMENT

The TE-3 exciter has provisions for three optional plug in modules; two SCA Generators, and one Stereo Generator. Figure 1.1 shows the TE-3 with Stereo Generator and SCA Generator installed.

1.3 TECHNICAL CHARACTERISTICS

1.3.1 MECHANICAL:

Width:
19" (Fits standard rack mount)
Height:
14"
Depth:
$121_{4}^{\prime \prime}$
Weight:
(Uncrated) 52 Ibs. (monaural only)
3 lbs . (SCA generator)
6 lbs . (stereo generator)
Finish:
Beige
Semiconductors used throughout.
1.3.2 ELECTRICAL: (Monaural Operation)

Frequency Range: $\quad 87.5$ to 108 MHz
Power Output:
10 Watts
RF Harmonics: Suppression meets or exceeds all
FCC requirements

RF Output Impedance:
50 ohms (BNC connector)
Frequency Stability:
$.001 \%$ or better
Modulation Capability: Capable of $\pm 100 \mathrm{kHz}(\pm 75 \mathrm{kHz}=100 \%$ modulation)

Audio Input Impedance:
600 ohms balanced
Audio Input Level:
$+10 \mathrm{dBm} \pm 2 \mathrm{~dB}$ for 100% modulation at 400 Hz

Audio Frequency Response:	Standard 75 microsecond FCC pre- emphasis curve, $\pm 1 \mathrm{~dB}, 30-15,000 \mathrm{~Hz}$
Distortion:	$.5 \%, 30$ to $15,000 \mathrm{~Hz}$
FM Noise:	65 dB bel ow 100% modulation (ref. 400 Hz)
AM Noise:	70 dB below reference carrier AM modulated 100%
Temperature:	-20° to $+50^{\circ} \mathrm{C}$
Altitude:	7,500 feet
Power Requirements:	117 VAC, single phase, $60 \mathrm{~Hz}, 85$ watts

ELECTRICAL: (Stereophonic Operation)

Pilot Oscillator:
Pilot Stability:
Audio Input Impedance
(Left and Right):
Audio Input Level:
(Left and Right):

Audio Frequency Response (Left and Right):

Distortion (Left and Right):
FM Noise (Left and Right):

Stereo Separation (Left to Right or Right to Left Channel):

Sub-Carrier Suppression (With or without modulation present):

* Crosstalk (Main channel to sub-channel or sub-channel to main channel):

Sub-Carrier 2nd Harmonic Suppression (76 kHz):

Crystal controlled
$19 \mathrm{kHz} \pm 1 \mathrm{~Hz}, 0^{\circ}$ to $50^{\circ} \mathrm{C}$

600 ohms balanced
$+10 \mathrm{dBm} \pm 1 \mathrm{~dB}$ for 100% modulation at 400 Hz

Standard 75 microsecond, FCC preemphasis curve, $\pm 1 \mathrm{~dB}, 50-15,000 \mathrm{~Hz}$
1% or less, $50-15,000 \mathrm{~Hz}$
60 dB (minimum) below 100\% modulation (ref. 400 Hz)

35 dB (minimum) 50 to $15,000 \mathrm{~Hz}$

42 dB (minimum) below 90% modulation

42 dB (minimum) below 90% modulaton, $50 \cdot 15,000 \mathrm{~Hz}$

60 dB or better below 100% modulation

NOTE: Stereophonic measurements to be made with an FCC approved monitor.

* Measurement to be made using an $L=R$ signal for sub-channel crosstalk and an

Frequency:
Frequency Stability:
Oscillator Type:

Modulation:
Modulation Capability:

Audio Input Impedance:
Audio Input Level:

Audio Frequency Response:

Distortion:
FM Noise (Main channel not modulated):

Crosstalk (Sub-channel to main channel and stereophonic sub-channel):
** Crosstalk (Main channel to sub-channel):

Any SCA channel between 25 and 75 kHz
$\pm 500 \mathrm{~Hz}$
Two Colpitts heterodyned to produce desired output frequency

Direct FM
Capable of $\pm 7.5 \mathrm{kHz}(\pm 5 \mathrm{kHz}$ considered 100% modulation)

600 ohms balanced
$+8 \mathrm{dBm}, \pm 3 \mathrm{~dB}$ for 100% modulation at 400 Hz

41 kHz and 67 kHz , 50 microsecond, modified pre-emphasis

67 kHz response modified for proper operation when used with stereo to conform to FCC specs
1.5% (or better) $30-7,000 \mathrm{~Hz}$

55 dB minimum (ref. 100\% modulation 400 Hz)
-60 dB or better

50 dB below 100% modulation (ref. 400 Hz) with main channel modulated 70% by frequencies $30-15,000 \mathrm{~Hz}$
** Crosstalk measurements to be made from an FCC approved monitor using 75 microsecond de-emphasis.

Automatic Mute Level: \quad Variable from 0 to 40 dB below 100\% modulation

Remote Control:
Exciter is internally equipped to be locally or remotely switched from monaural to stereo operation. On monaural operation, normal right audio input connections are switched to the 41 kHz SCA position, if used. Remote functions are accomplished by a single set of external relay contacts, (closure required for stereo operation). An external relay must provide a holding function.

FRONT
VIEW
FIG. 1.1

FRONT
VIEW
FIG. 1.2

FRONT
VIEW
FIG. 1.3

SECTION 2 - INSTALLATION

2.1 DAMAGE CLAIM INFORMATION

In case of damage, notify the delivering carrier at once. After he has approved the damage report order new part(s) from Gates Radio Company, using the parts list for description and individual identification.

2.2 UNPACKING AND INSPECTION

The container and packing should be removed only after a careful examination of the outside of the carton for indications of possible mishandling.

Retain packing material until installation is complete and the TE-3 is placed in operation.

2.3 UNPACKING CHECK LIST

When the TE-3 is shipped as a separate unit, the following items are furnished and packed separately:

> EQUIPMENT GATES PART NO.

Basic

TE-3 Cabinet
Modulated Oscillator (Module)
Audio Unit (Module)
AFC Control (Module)
Power Amplifier (Module)
Technical Manual
Optional
SCA Generator 1 or 2 Modules(s) 9946507001
Stereo Generator (Module) 9946533001

2.4 MECHANICAL DETAILS

The modular design assures easy access to all parts during inspection, routine maintenance and repair. Each module may be released from the chassis by means of thumb screws, and operated external to the chassis.

The exciter output may be connected into a dummy load, antenna, or a following amplifier stage.

2.5 POWER REQUIREMENTS \& CONNECTION

A $117 \mathrm{VAC}, 60 \mathrm{~Hz}$, single phase, 85 watt, fuse or circuit breaker protected, power source is required. No additional equipment is necessary for operation.

Connect the input power to terminals 7 \& 8 of TB1. See Fig. 2.1.
When the AC input is 117 VAC , the black and green/black primary leads of the transformer T1 should be used. If the AC input voltage is less than 105 VAC, the black and white/black primary leads should be used. If the AC input voltage is greater than 125 VAC, the black and white primary leads should be used.

R.F. OUTPUT CONNECTION

The R.F. connection to the exciter is a BNC connector (J1) on the rear of the unit. See Fig. 2.1. Use coaxial cable type RG58A/U.

Additonal connections are located on the terminal board TB1 on the rear of the exciter. They are as follows:
$1-2-3: \quad$ Left Audio Input (2 is shield)
$4-5-6: \quad$ Right Audio Input (5 is shield) or SCA

7-8: AC Input
9-10:
11-12-13:
AFC Alarm
(N.C.)

SCA Audio
(12 is shield)

$$
\begin{array}{r}
14-15: \\
16-17-18-19-20:
\end{array}
$$

Stereo-Mono Switch
Spare

REAR
VIEW
FIG. 2.1

SECTION 3-OPERATION \& ADJUSTMENT

$3.1 \quad$ FRONT PANEL CONTROLS

The following table gives the identification and function of the front panel controls, (See Fig. 1.1 for basic modules).

TABLE 3.1
FUSES \& TEST POINTS
LOCATION AND IDENTIFICATION

IDENTIFICATION
 TYPE
 FUNCTION

Power Supply

F2	3 Amp Fuse	Protect +24 Volt circuits
F3	2 Amp Fuse	Protect 115 VAC circuits
S1	Toggle Switch	Energize/De-energize unit
A1	Green Light	Indicates unit energized

Power Amplifier
R11
Potentiometer
DRIVE Adjusi
Modulated Oscillator
R29
Knob controlled Pot.
AFC Adjust
Audio Unit

$$
\begin{array}{ll}
\text { Toggle Switch } & \text { STEREO/MONO/REMOTE } \\
& \text { SELECT }
\end{array}
$$

AFC Unit

S1
R48
M1
S2

.

Toggle Switch Potentiometer DC Microammeter 5 position knob controlled switch

Stereo Generator

S1	Toggle Switch
TJ1	Jack (Test)
TJ2	Jack (Test)
R68	Potentiometer
R53	Potentiometer
R27	Potentiometer
R24	Potentiometer

$$
\begin{aligned}
& \text { Jack (Test) } \\
& \text { Jack (Test) } \\
& \text { Potentiometer } \\
& 4 \text { position knob } \\
& \text { Potentiometer }
\end{aligned}
$$

SCA Generator

TJ1	Jack (Test)
TJ2	Jack (Test)
R30	Potentiometer
S1	4 position knob
R32	Potentiometer

AFC-ON/OFF
FREQ. ADJUST Indicates indexed function Indicates meter function

COMPOSITE/PILOT OFF COMPOSITE OUTPUT GROUND L + R GAIN Adjust OUTPUT LEVEL Adjust PILOT GAIN Adjust PILOT PHASE Adjust

3.2 TURN ON PROCEDURE

INITIAL
Connect input, output, and power leads as outlined in Section 2.
Turn on main power switch S-1 on the power supply and allow approximately thirty seconds warmup. Set the AFC "OFF/ON" switch to the "ON" position. The red "Alarm" lamp should be extinguished.

NOTE: If it is not, slowly rotate the "AFC Adjust" control on the modulator until it is extinguished.

Adjust the "DRIVE" control on the Power Amplifier for required output.
Select stereo or mono operation with the toggle switch on the audio unit.
After approximately 30 minutes adjust the frequency by rotating R-48 "FREQ $A \bar{D} J^{\prime \prime}$ on the $A F C$ unit for correct frequency as read on a frequency monitor or counter.

The TE-3 is now ready for operation.
NOTE: In routine operation it is recommended that the TE-3 be left on at all times.
3.3 MODULATED OSCILLATOR ADJUSTMENT - See Fig. 4.3

The front panel control "AFC ADJUSTMENT" is a vernier frequency adjustment. Two additional factory adjustments, coarse frequency adjustment (L3) and the modulator bias adjustment (R6) are located on the shock mounted chassis.

Turn the "AFC ADJUSTMENT" control to a mid-range position and turn the meter switch on the AFC unit to the "AFC" position. Turn the AFC switch to "ON".

NOTE: Within a few seconds the "Alarm" lamp should extinguish and the AFC meter should read on scale.

Adjust the "AFC ADJUSTMENT" on the modulated oscillator for a reading between 29 and 31 on the AFC meter.

NOTE: The recommended operating range of the "AFC" position of the meter switch is from 22 to 35 . Operation within this range will assure that the modulated oscillator is always within the capture range of the automatic frequency control unit. This will assure that the automatic frequency control will regain a locked condition after a power failure or other interruption of power.

3.4 ALARM CIRCUITS ADJUSTMENT

The operation of the AFC alarm system may be verified in the following manner.

Momentarily disconnect the RF connector from the "AFC" input jack on the modulated oscillator. Note that the "ALARM" lamp lights immediately. Re-insert the connector and note that the lamp extinguishes within a few seconds.

Note that the AFC meter is in the "AFC" position and rotate the "AFC ADJUSTMENT" fully counterclockwise. Note that the meter reading has decreased to approximately 15. Momentarily turn the "AFC" switch off and on. Note that the "ALARM" lamp illuminates and the meter returns to mid-scale. Rotate the "AFC ADJUSTMENT" clockwise until the "ALARM" lamp is extinguished. Set the "AFC ADJUSTMENT" for a reading between 29 and 31 on the AFC meter.

POSITION
"Mod"
"AFC"
"Mod Out"
"PA Out"
"Ref" Output of Reference Frequency Divider Chain. Nominal Reading: $\quad 35-45$

INDICATION

Output of Modulat or Frequency Divider Chain. Nominal Reading: $35-45$

AFC Buss Voltage.
Nominal Reading: 25-35
Power Output of Modulator. Nominal Reading: Refer to Final Test Data supplied with exciter.

Power Output of Exciter. Nominal Reading: Refer to Final Test Data supplied with exciter.

SECTION 4 - THEORY OF OPERATION

4.1 GENERAL

The TE-3 Exciter is self-contained with capabilities in excess of minimum FCC specifications.

Each exciter is factory tested on the customer's frequency and satisfactory operation is verified.
4.2 POWER SUPPLY - See Fig. 7.3 Schematic \& Fig. 4.1 Photograph

The power supply consists of a two section unit. The two sections supply a regulated 24 DC volts and a regulated 150 DC volts respectively. Both sections receive $A C$ voltage from a common power transformer.

NOTE: The 150 volt section is not used in the TE-3.
In the 24 volt supply, the AC voltage supplied by transformer T1, is rectified by diodes CR6 through CR9. The rectified voltage is applied to filter section C3, C4, and R7. Q4 is a series control transistor that regulates the 24 volt supply. A sample of the output voltage is compared with a reference voltage in Q7. The reference voltage is supplied by temperature compensated diodes CR 10 and CR11. Any change in the output voltage is amplified by Q 5 and Q6. This amplified output causes series control Q4 to return the output voltage to the value set by R11.

> NOTE: The output voltages will remain relatively constant over a temperature range of -20 to $+70^{\circ} \mathrm{C}$. The output voltages will remain constant as the line voltage is varied from 85 to 115% of normal 117 volt AC supply. Normal load variations will cause no voltage change in these supplies.
4.3 POWER AMPLIFIER - See Fig. 7.6 Schematic \& Fig. 4.2 Photograph

The power amplifier is a four stage amplifier. Transistors Q1, Q2, and Q3 are single stage amplifiers. Q4 and O5 are paralleled to obtain the desired output level.

Maximum power is 10 to 15 watts. Power output is determined by the setting of R11, the input drive control. Transformers T1 and T2, along with the associated capacitors C4 and C7 match the output impedance of these stages to the low input impedance of the following stages. Inductors L1, L2, and capacitors C14 and C15 match the output impedance of Q3 to the low impedance of Q4 and Q5. The output circuit of Q4 and Q5 is a modified Pi type of circuit consisting of L5, L6, and C19 and C20.

AUDIO UNIT - See Fig. 7.7 Schematic \& Fig. 4.5 Photograph
The audio unit supplies the modulated oscillator with all main channel modulation (excluding SCA). When the function switch is in the "MONO" position, left audio input is filtered and pre-emphasized and applied directly to the modulated oscillator unit. The composite stereo signal including the pilot is completely removed from the modulation input of the modulated oscillator.

If the function switch is in the "STEREO" position, left and right audio inputs are filtered, pre-emphasized and applied to a resistive matrix. They then connect to the stereo generator. The composite stereo signal including pilot returns through the audio unit for application to the modulation input of the modualted oscillator.

Left audio input circuitry consists of three fundamental types of circuits. First, is a 19 kHz notch filter consisting of L 1 and C 1 .

Resistors R1 through R5 and capacitors C2, C3, C4 àlong with inductor L2 form a 75 microsecond pre-emphasis section.

The primary and secondary impedance of T1 is 600 ohms. Right audio input circuitry is exactly identical to left audio input circuitry.

When selector switch S1 is in the STEREO position, output of the left preemphasis section is connected to the primary of T1. The secondary of T1 connects into the matrix consisting of R13 through R18. At the same time, right audio input signals are routed through the right 19 kHz filter, preemphasis network and T2. The secondary of T2 is also connected into the resistive matrix.

Output of the matrix then produces the $L-R$ and $L+R$ signals for application to the signal unit of the stereo generator. At the same time the composite signal along with the 19 kHz pilot is connected through the relay to the input terminals of the modulated oscillator.

When S 1 is placed in the MONO position, audio input signals connected to the left audio input, again pass through a 19 kHz notch filter and the left preemphasis network. There the signal terminates in R11. R11 may be adjusted to produce the desired modulation level for a given level of audio input.

Also with S1 in the MONO position the normal right stereo input terminals are connected through relay contacts K 1 for application to the input of a 41 kHz sub-carrier generator unit if it is used. The 41 kHz SCA (if used) is muted when audio is not applied.

The stereo generator is completely bypassed when S1 is in the MONO position and no stereo signals (or pilot) can modulate the main carrier.

When S1 is in the REMOTE position the mono to stereo functions may be performed by the contacts of a remote control relay. This relay must perform a holding function.
4.5 MODULATED OSCILLATOR - See Fig. 7.4 Schematic \& Fig. 4.3 Photograph

The modulated oscillator accepts monaural, composite stereo, and SCA signals and generates a stable, low distortion, frequency modulated signal in the standard FM broadcast band of 87.5 to 108 MHz .

The modulated oscillator consists of three sections; a stable oscillator, a buffer amplifier, and a power supply regulator.

There are four inputs to the modulated oscillator; baseband for monaural or composite stereo, two isolated SCA inputs, and an automatic frequency control input.

Three outputs from the modulated oscillator are as follows: An RF output of approximately 500 millivolts into a fifty ohm load for automatic frequency control ($\mathrm{J}-2$). An RF output of 20 milliwatts to drive a power amplifier ($\mathrm{J}-3$) and a DC output proportional to the RF output level that provides a convenient means of monitoring the RF output of the modulator ($\mathrm{J} 1-9$).

4.5.1 OSCILLATOR

The oscillator is a modified "CLAPP" circuit operating at the assigned carrier frequency at a power level of approximately 150 milliwatts.

The oscillator frequency is adjusted by L3 and R29. L3 is an internal coarse frequency adjustment used to set the oscillator frequency within the adjustment range of the vernier frequency adjustment R29.

NOTE: L3 is factory adjusted and should not be reset in the field.

Resistor R29 is a ten turn potentiometer located on the front panel. See Fig. 1.1. R29 provides a reverse bias voltage to CR3, a voltage variable capacitor, used as an electrically adjustable frequency control. A DC control voltage from the automatic frequency control unit maintains the electrical adjustment and is the frequency controlling element in the system.

Diodes CR1 and CR2 are connected to the oscillator tank circuit and are biased to the linear region by resistor R6, the "Modulator Bias" control. See Fig. 4.3.

Modulation from the audio unit, or SCA generators, or stereo generator is applied to the junction of diodes CR1 and CR2.

4.5.2 BUFFER AMPLIFIER

A broadband matching network consisting of L4 and C12 matches the collector circuit of the oscillator transistor Q1 to the attenuator network, R13, R14, and R15. The attenuator provides a nonreactive load and isolation for the signal. Transistor 02 amplifies the oscillator output to approximately 500 milliwatts.

A broadband low pass filter comprised of C23, C24, and L6 matches the collector circuit of Q2 to the output attenuator, R20, R21, and R22.

The attenuator network reduces the output level of the buffer stage to a level sufficient to drive the power amplifier and provides additional isolation for the oscillator circuit.

A sample of the RF output of the buffer stage is directed to the automatic frequency control system. An additional sample of the RF output is rectified by diode CR8. The DC voltage derived from diode CR8 is used to provide a meter reading on the AFC unit proportional to the RF output of the modulated oscillator.

NOTE: The oscillator and buffer transistors are low noise silicon "overlay" transistors designed specifically for VHF oscillator and amplifier applications.

4.5.3 POWER SUPPLY REGULATOR

The power supply regulator is a conventional pass transistor type using a zener, regulated reference voltage applied to the base of Q3. The reference voltage is temperature compensated by diode CR7.

4.6 AUTOMATIC FREQUENCY CONTROL UNIT

See Fig. 7.5 Schematic \& Fig. 4.4 Photograph
The automatic frequency control unit is designed to operate in conjunction with the modulated oscillator to provide a stable, automatically controlled, FM broadcast signal in the standard FM broadcast band of 87.5 to 108 MHz .

The automatic frequency control unit is divided into five sections: Reference oscillator, frequency dividers, phase detector, power supply regulator, and alarm circuitry.

The AFC unit operates on the principle of the phase locked loop. The input signal frequency from the modulated oscillator is phase locked to an internal crystal controlled reference.

The AFC unit is energized from the FM exciter main frame with 24 V DC at 300 milliamps. In addition, 500 millivolts of RF at the carrier frequency is necessary for operation.

A multimeter is incorporated (see Fig. 1.2), to monitor five parameters associated with the AFC unit, the modulated oscillator, and the power amplifier. A red pilot light will indicate any malfunctions and a front panel switch disables the AFC unit during initial tune-up and in case of malfunction.

Exact center frequency adjustment is assured by a vernier frequency control.

4.6.1 REFERENCE OSCILLATOR

The reference oscillator is a standard crystal controlled oscillator utilizing an integrated circuit, Z12. The oscillator frequency is adjusted with capacitor C27 and diode CR10.

The first two transistors of the integrated circuit Z12 form an emitter coupled amplifier and the third transistor is a buffer amplifier to isolate the load from the crvstal oscillator. The crystal is a high stability unit enclosed in a temperature controlled oven. The oven temperature is maintained at $60^{\circ} \mathrm{C}$ by the closed loop system consisting of integrated circuit Z13, a differential amplifier, thermistor RT1, transistor Q6, and resistor R38. R38 is used as the oven heater element. The oven temperature is evaluated by thermistor RT1. The output of RT1 controls the bias voltage at the base of Z13B. The bias voltage is compared with the reference setting at the base of Z13A and the difference between the two voltages is amplified and applied to the base of control transistor $\mathrm{Q} 5 . \mathrm{Q} 5$ regulates the current through the heater resistor R38 and controls the oven temperature.

4.6.2 FREQUENCY DIVIDERS

Two frequency divider systems are incorporated in the AFC unit, one for the modulated oscillator output and one for the reference oscillator output.

The modulated oscillator divider consists of integrated circuits $\mathrm{Z1}$ through $\mathrm{Z7}$ and divides the input frequency by 16,384 . This is necessary to eliminate the phase shift in the incoming signal caused by the frequency modulation. The large division ratio permits full range modulation from twenty hertz upward without upsetting the phase detector function.

All of the integrated circuits are bi-stable multi-vibrators or "Flip Flops". The resultant output of either side of the flip flops is a frequency one half of the input frequency. The output at test point TP1 is $1 / 16$ th of the incoming frequency.

Transistor Q 1 is a buffer amplifier used to isolate and amplify the output of $\mathrm{Z4}$ to a level sufficient to drive $\mathbf{Z 5}$. Integrated circuits $\mathbf{Z 5}, \mathbf{Z 6}, \mathbf{Z 8}$, and $\mathbf{Z 9}$ divide each incoming signal by sixteen. Integrated circuit $\mathrm{Z7}$ divides the incoming signal by four.

The reference oscillator frequency divider consists of integrated circuits $Z 8$ and $Z 9$ and divides the frequency of the reference oscillator by 256 . This is done in order to operate the crystal in the most stable range.

4.6.3 PHASE DETECTOR

The phase detector consists of integrated circuit Z10. The IC is a flip-flop circuit with the toggle input connected to the reference oscillator frequency divider which keys alternate sides of the flip-flop. The resultant output of the phase detector is a square wave with a duty cycle of fifty percent. The output of the modulated oscillator frequency dividers is also a square wave. This signal is differentiated by capacitor C9 and resistor R5 to form a sharp pulse. The pulse is used to "set" the flip-flop Z10.

> NOTE: If the frequencies at the input of the phase detector are exactly equal, the output of the phase detector will be a square wave with a duty cycle proportional to the relative phase of the two input signals.

The square wave output of the phase detector is amplified by transistor Q 2 to a level of approximately twenty volts peak to peak. The signal is then filtered by resistors R9 and R10 and capacitors C13 and C14 to remove the reference frequency component of the signal. The amplitude of the remaining DC component is then proportional to the phase difference of the input signals and is used to control the modulated oscillator frequency.

4.6.4 ALARM CIRCUITS

Five circuits are monitored by the alarm circuits, three directly and two indirectly. The alarm output, indicating functional failures, is displayed on the front panel by indicator lamp DS-1. The alarm output is also available in the form of normally open and normally closed relay contacts through the power connector.

The circuits directly monitored by the alarm system are the reference and modulated oscillator frequency dividers and the "out of lock" condition. The circuits indirectly monitored are the reference oscillator output and the modulated oscillator output through their respective dividers.

The output of the reference frequency dividers is detected and converted to a DC voltage by diodes CR1 and CR2. The detected voltage is amplified by Z11C and Z11D.

NOTE: Both amplifier stages are biased in a saturated condition or cut off.

In normal operation both stages are saturated and there is no output from Z11D. If a failure occurs in this section, the voltage at the collector of Z11D will increase toward five volts. Diode CR5 will conduct, turning on Z14B and Q3. When Q3 conducts, alarm lamp DS-1 illuminates and relay K1 is energized. This action disables the associated transmitter.

The modulated oscillator and its associated frequency dividers are monitored in an identical manner by Z11A and Z11B and their associated components.

An "out of lock" condition exists when the modulated oscillator is operating at a frequency outside the lock in range of the phase detector and the automatic frequency control circuit. When this condition occurs the phase detector output will contain a large AC component in addition to the normal comparison frequency and DC component. The AC component is directly proportional to the frequency error between the two signals. The AC component is amplified by Z14A and detected by diodes CR11 and CR12. The resultant DC voltage turns on Z 14 B and O 3 in a manner identical to the presentation in the previous section.

The comparison frequency present in the normal output of the phase detector is removed by the filtering action of R27, R28, C20, and C21.

NOTE: The frequency response of the amplifier is such that it will not respond to all signals outside the capture range of the phase detector.

STEREO GENERATOR

A 19 kHz pilot signal is generated by a crystal controlled oscillator Q1 for the composite stereo. Q2 isolates this signal and the 19 kHz signal is applied to the 19 kHz tuned amplifier stage Q3. The secondary of transformer T1 is connected to a push-pull doubler circuit consisting of transistors Q4 and Q5.

This stage in conjunction with transformer $T 2$ generates a 38 kHz signal. The 38 kHz signal is applied to the balanced sub-carrier modulator circuit consisting of transformers T3 and T4 and diodes CR1 through CR4.

An L-R input signal from the audio unit is also applied to the balanced subcarrier modulator.

An L-R double sideband suppressed carrier signal appears at the output of T4. Harmonics of this signal are reduced by forward biasing of diodes CR1 through CR4 and by adjusting the harmonic null control R37. Sub-carrier null control R48 balances out the residual 38 kHz sub-carrier to a level of approximately -45 dB .

NOTE: Second harmonics of the double sideband signal fall into the band pass of the normal 67 kHz SCA signal. If these second harmonic signals are not attenuated, crosstalk from the stereo signal will interfere with the sub-carrier channel.

The L+R input signal from the audio unit is combined with the L-R double sideband signal at the junction of C22, R53, and R60. A circuit consisting of L3 through L6 and capacitors C29 and C30 adjusts the time delay of the $L+R$ input to match the L-R signal. A composite stereo signal appears at the junction of C22, R53, and R60. This signal is applied to the emitter follower Q12 from the output level control R53.

The composite stereo signal is amplified by Q13 and applied to the base of emitter follower Q14.

The total composite signal with $10 \% 19 \mathrm{kHz}$ pilot signal appears at the emitter of Q14.

A pilot signal from terminal 4 of transformer T1 is applied to emitter follower Q6. Maximum separation is maintained by the adjustment of the pilot phase by the phase control between Q 6 and emitter follower Q 7 . A pilot gain control is incorporated at the emitter of transistor Q7. The pilot signal is added to the composite output by connecting R27 to the emitter resistor of Q14.

The second harmonic signal from R53 via Q8 is amplified and inverted by Q9. This signal is applied to emitter follower Q10 and from Q10 to the amplifier Q13, thus canceiling the harmonics.

NOTE: Crosstalk null control R33 cancels any remaining crosstalk.

4.8 SUB-CARRIER GENERATOR

The sub-carrier generator generates the sub-carrier frequencies (41 or 67 kHz) by utilizing two self-excited oscillators.

Q 1 and Q 2 are the individual Colpitts oscillators. Q1 oscillates at 900 kHz and Q2 oscillates at 941 or 967 kHz .

The outputs from Q1 and Q2 are mixed by diodes CR1 and CR2. Filter network L5, C13, and C14 remove all undesired frequencies.

The sub-carrier frequency is amplified by O 3 and applied to a tunable low pass filter. The filter consists of L6, L7, L8, C19, C20, C21, and C22, and removes all harmonics of the sub-carrier frequency.

By variation of the base bias voltage the oscillators are frequency modulated at an audio rate. The audio modulation is applied to the oscillators Q 1 and Q 2 by the push-pull audio transformer T1.

NOTE: An audio shaping network is connected prior to the primary of $\mathrm{T1}$. The network is adjusted so that the audio response will increase several $d B$ at 5 kHz with respect to the 400 Hz reference. The response will roll-off above 5 kHz .

When this generator is used as a 67 kHz sub-carrier unit for use with stereo, capacitors C1 and C2 are disconnected. The circuit then functions as a deemphasis circuit. The roll-off is above 3 kHz to avoid generating side bands that would interfere with the stereo signal.

A portion of the audio input is applied to a muting circuit consisting of Q4, Q5, Q6, and Q7. Q4 and Q5 amplify and square the input audio. The resulting square wave signal is rectified by diodes CR3 and CR4.

When audio is applied to Q6 the DC level at the base of Q6 and the bias of Q7 keeps Q6 and Q7 from conducting.

When audio input is removed, Q6 and Q7, conduct causing the impedance from the junction of C17 and C18 to chassis ground to drop to a few ohms. This causes the sub-carrier output to be attenuated approximately 50 to 60 dB .

NOTE: The length of time between sub-carrier shut off and when the audio is removed from 04 is determined by a capacitor network at the base of 06 in conjunction with the mute time constant switch S1.

The Mute Level control, R32, determines the audio level required to turn OFF the sub-carrier.

INTERNAL VIEW
POWER SUPPLY
FIG. 4.1

POWER AMPLIFIER
FIG. 4.2

INTERNAL VIEW
MODULATED OSCILLATOR

FIG. 4.3

INTERNAL VIEW
(OVEN COVER REMOVED)
AFC UNIT
FIG. 4.4

INTERNAL VIEW
AUDIO UNIT
FIG. 4.5

INTERNAL VIEW
STEREO GENERATOR
FIG. $4-6$

INTERNAL VIEW
SCA GENERATOR
FIG. 4-7

SECTION 5 - TROUBLESHOOTING

5.1 GENERAL

Each individual unit is thoroughly tested on the customer frequency before shipment. If any unit fails to operate properly, insure that all connectors fit properly into the respective receptacles on each individual module.

Isolate a problem to an individual module by referring to the overall block diagram Fig. 7.1. Refer to the appropriate schematic of the module in question.

5.2 NO CARRIER OUTPUT

Check that the power supply is providing 24 V DC. If the pilot lamp on the power supply is extinguished, insure that S1 on the power supply is "ON". Determine the condition of the 117 V AC connections at the terminals on the rear of the exciter. Check the condition of F3, the 117 volt fuse on the power supply. Check fuse F1 located on the rear of the cabinet.

If the pilot lamp on the power supply lights; check F2, the 24 V fuse on the power supply.

If the power supply is providing the proper voltages, check the output coax of the exciter for a short or open circuit.

Determine if the modulated oscillator is providing output by listening to an FM Receiver tuned to the operating frequency. Check the output level of the modulated oscillator as read on the AFC meter.

If the modulated oscillator is functioning properly and is providing power output to the 10 watt amplifier, trace the RF signal through the amplifier stages and compare $A C$ and $D C$ voltages with the schematic values.

5.3 CARRIER OFF FREQUENCY

Measure the "Locked" and "Unlocked" frequency. If the frequency is further away from the correct value when the AFC defeat switch is on, the fault is probably in the AFC unit. Determine if the fine frequency control knob has been misadjusted. Check the power supply voltages.

If the AFC unit isn't functioning, the AFC switch may be turned off and the modulated oscillator tuned to carrier frequency and operated temporarily without AFC.

NOTE: Drift must be checked at short intervals when operating in this mode.

NOTE: Some types of frequency monitors will display a nearly
"ON FREQUENCY" reading when the carrier is several hundred kHz off frequency. The correct frequency is the point where the AFC "Locks" instead of kicking the frequency monitor off scale.

5.4 HIGH DISTORTION

Units other than the transmitter will usually be responsible for high distortion; especially the console, amplifier, limiters, and audio lines. There are no active elements present in the exciter at audio frequencies.

5.5 HIGH NOISE

First establish the noise as to type. If the noise is 120 Hz ripple, check the power supply. Disconnect the audio lines. If the noise originates from the audio lines, check that the center tap of the audio output transformer of the audio equipment is not grounded. In a remote controlled system, check all isolation devices. Determine if the modulated oscillator is causing the noise by disconnecting the audio unit and any SCA generators used.
5.6 EXCESSIVE CROSSTALK (Main \& Stereo Channel to SCA Channel)

Determine if crosstalk is present on the audio input lines. The most common cause of high crosstalk is in the detector and IF strip of the SCA monitor or SCA receiver. Determine if high crosstalk is present on more than one receiver.

NOTE: Crosstalk may occur in improperly tuned stages in either the transmitter or receiver. The tuned stages of the exciter amplifier are very broad and should not cause trouble.

5.7 POOR STEREO SEPARATION

Check the wave form at the output of the stereo generator and at the output of the monitor or receiver detector. Determine if the pilot is on and is modulating the main carrier 8 to 10%. Check the pilot phase.
5.8 POWER AMPLIFIER TUNING

All internal adjustments are tuned for maximum power output. R11, the input "DRIVE" control on the front panel is then set for the desired power output.
5.9 AUDIO UNIT ALIGNMENT - See Fig. 4.5

S 1 is placed in the "Mono" position to adjust the audio unit.
A $400 \mathrm{~Hz},+10 \mathrm{dBm}$ signal is applied to the left audio input. Adjust R11 for 100% carrier modulation.

A "Left=Right" signal of 400 Hz is applied to the left and right audio inputs and S1 is switched to the stereo mode. Adjust R18 for a minimum 400 Hz signal level at J11-10 (L-R out).

A "Left=Minus Right" signal of 400 Hz is then connected into the left and right audio inputs. Switch S1 to the stereo mode position and adjust R17 for a minimum 400 Hz signal level at J11-6 (L+R out).

Apply a 19 kHz audio signal to the left audio input terminal and adjust L1 for a minimum 19 kHz output signal at J11-6 (L+R out). Apply a 19 kHz audio signal to the right audio input terminal and adjust L3 for a minimum 19 kHz output signal at J11-6 ($L+R$ out). Adjust $L 2$ and $L 4$ for a 16.8 dB increase in output level at 15 kHz as compared to a 400 Hz reference signal. Measure this signal at J11-6 (L+R out).

Connect the $\mathrm{L}=\mathrm{R}$ and $\mathrm{L}=\mathrm{R}$ signals into the exciter input terminals. Adjust L 1 through $L 4$ for minimum $L+R$ to $L-R$ crosstalk at 15 kHz . Measure at the $L-R$ and $L+R$ terminals of the matrix.

STEREO GENERATOR ALIGNMENT - See Fig. 4.6
C2 is adjusted to set the pilot frequency as observed on a frequency counter or monitor.

R20, the doubler balance control, is adjusted for minimum 19 kHz ripple on the composite output signal, This adjustment is performed without a pilot signal.

The sub-carrier null control, R48, is adjusted for a minimum 38 kHz output. Harmonic null control, R37 is adjusted for minimum second harmonic output from the balanced modulator.

> NOTE: The adjustment of R48 and R37 may be observed on an approved stereo monitor, wave analyzer, or ultrasonic display.

R53, the output level control, is adjusted to modulate the main carrier 90% with a 400 Hz left or right audio input signal of +10 dBm . This level excludes the pilot.

L1 is tuned to the second harmonic of the 38 kHz double sideband signal and R33, the crosstalk null control, is adjusted to cancel out the 76 kHz component remaining at the output of the stereo generator.

The pilot gain control R27 is adjusted to modulate the main carrier 10\%. The pilot phase control, R24 is adjusted for best separation as read on a stereo monitor.

SUB-CARRIER GENERATOR SETTING - See Fig. 4.7
The first SCA generator adjustments consist of tuning the output filter so that there are essentially no harmonics of the sub-carrier present in the output of the SCA generator.

L6 and L8 are adjusted for maximum attenuation of the second harmonic of the SCA frequency. L7 is adjusted to minimize ripple over the sub-carrier passband.

NOTE: The passband is considered to be the sub-carrier frequency $\pm 15 \mathrm{kHz}$.

L3 is adjusted for an approximate output frequency of 900 kHz and L 4 for approximately 900 kHz plus the sub-carrier frequency. The L 4 frequency is generally 941 or 967 kHz . L3 or L4 is then fine tuned for the exact SCA frequency.

> NOTE: The SCA frequency must be compared to a frequency standard. A non-metallic tool with narrow screwdriver type blade is necessary for this adjustment.

The output level control, R30, is set to modulate the main carrier at the required level.

The Mute Level control, R32, is adjusted to turn off the sub-carrier output if the audio input signal disappears.

NOTE: Optimum setting is 30 to 40 dB below 100% modulation of the sub-carrier.

Connect an audio signal at 400 Hz to the proper SCA input terminals of the exciter and modulate the sub-carrier 100\%. Reduce the level of the audio input 30 or 40 dB and adjust R32 so the sub-carrier output disappears.

NOTE: S1, the mute delay, is adjusted to whatever muting speed is desired after the audio is removed from the input.

SECTION 6 - PARTS LIST

6.1 - CHASSIS

SYMBOL	DESCRIPTION	GATES PART NO,			SYMBOL	DESCRIPTION	GATES PART NO.		
B1	$\begin{aligned} & \text { Fan } 115 \mathrm{~V} \mathrm{AC} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	430	0037	000	Y1	Crystal, NE6A (Frea. Determined by Customer)	444		000
F1	Fuse 4 Amp 250 V Type-AGC	398	0021	000	XF1	Fuse Holder	402	0074	000
						RF Weather Strip	358	0834	000
J1	Panel Jack, BNC UG291/U	612	0418	000		Shock Mount	426	0003	000
P12	Plug BNC UG88/U	610	0238	000					

6.2 - POWER SUPPLY

SYMBOL	DESCRIPTION	GATES PART NO.			SYMBOL	DESCRIPTION	GATES PART NO.		
A1	Lamp 3W 120 V	396	0163	000	CR 1 thru CR4	Diode 1N2070	384	0019	000
					CR5	Zener Diode 1N4061	386	0189	000
C1	Cap 200 uF 250 V	524	0125	000		Diode 1N4720	384	0165	000
C2	Same as C1				thru CR9	Diode IN4720	384	0105	000
C3	Cap 1000 uF 50 V	524	0104	000			386	0047	000
C4	Same as C3				CR10	1N3582	386	0047	000
C5	Cap 500 UF 50 V	524	0094	000	CR 11	Diode 1N914	384	0134	000
C6	Cap 470 pF 1 kV	516	0043	000	CR12	Zener Diode 1N4749A	386	0077	000
C7	Same as C6				CR 13	Same as CR 11			
C8 thru C14	Cap . 01 uF 50 V	516	0375	000					
C15	Cap 2 UF 200 V	506	0085	000					
C16	Cap. 01 uF 1 kV	516	0082	000	F1	Fuse 3/10A 250 V AGC	398	0012	000
C17	Same as C16				F2	$\begin{aligned} & \text { Fise } 3 A \\ & 250 \mathrm{~V} \text { MTH } \end{aligned}$	398	0020	000
					F3	$\begin{aligned} & \text { Fuse } 2 \mathrm{~A} \\ & 250 \vee \mathrm{AGC} \end{aligned}$	398	0019	000

SECTION-6 - PARTS LIST - CONT'D.

6.2 - POWER SUPPLY - CONT'D

SYMBOL	DESCRIPTION	GATES PART NO.			SYMBOL	DESCRIPTION	GATES PART NO.		
31	Panel Connector	610	0419	000	R15	Same as R8			
					R16 thru R18	Res 10 K ohms 1/4 W 5\%	540	0936	000
Q1	Transistor 2N3054	380	0041	000					
Q2	Transistor 2N4036	380	0045	000	S1		604	0005	000
Q3	Transistor 2N3440	380	0058	000		SPST, 6A, 125 V			
Q4	Transistor 2N3055	380	0043	000					
Q5	Transistor 2N3054	380	0041	000					
					T1	Transformer Power	472	0536	000
Q6	Transistor 40319	380	0044	000					
07	Transistor 2N697	380	0098	000					-
					XA1	Lamp Socket (Less Lens)	406	0367	000
R 1	Res 10 ohms 1 W5\%	540	0284	000					
R2	Res 30 ohms 2 W 5\%	540	0574	000	$\begin{aligned} & \text { XF } 1 \\ & \text { thru } \end{aligned}$	Fuseholder	402	0013	000
R3	Res $2,2 \mathrm{~K}$ ohms 3W 1\%	548	0189	000	XF3				
R4	Pot 1 K ohm $1 / 2 \mathrm{~W}$	552	0775	000					
R5	Res 17.5 K ohms 3W 1\%	548	0190	000	XQ1	Not Used in Power	Suppl		
					$\begin{aligned} & \text { xa2 } \\ & \text { thru } \\ & \text { xa3 } \end{aligned}$	Transipad for TO-5 Case	404	0198	000
R6	Same as R5								
R7	Res 2 ohms 25 W	542	0438	000	XQ4 thru X05	Not Used in Power	Supply		
R8	Res 1 K ohm 3W 1\%	548	0192	000	$\begin{aligned} & \text { XQ6 } \\ & \text { thru } \\ & \text { XQ7 } \end{aligned}$	Same as \times Q2			
R9	Res 68 ohms 2 W 5\%	540	0583	000					
R10	Not Used in Power Supply								
						Heat Sink	814	3250	701
						Lens, Green	406	0378	000

SECTION 6 - PARTS LIST - CONT'D.

6.3-10 W POWER AMPLIFIER - CONT'D.

SYMBOL	DESCRIPTION	GATES PART NO			SYMBOL		DESCRIPTION	GATES PART NO	
R6	Res 33 ohms 1 W 5\%	540	0296	000	T1		Tiansformer Bifilar	914	3246001
$R 7$	Same as R4				T2		Transformer Bifilar	914	3217001
R8	Res 2.2 K ohms 1/2 W 10\%	540	0182	000					
R9	Res 27 ohms 1/2W5\%	540	0011	000					
R10	Same as R9				$\begin{aligned} & \text { XQ1 } \\ & \text { thru } \\ & \text { XQ2 } \end{aligned}$		Heal Sink (For TO. 5 Cus:)	404	0196000
R11	Pot 100 ohms $1 / 2 \mathrm{~W}$	550	0001	000	Plate		\& Suppot $837-9734-6$	$\begin{aligned} & B a \\ & o l \end{aligned}$	(mykroy)
R12	Res 1 K ohm $1 / 2$ W 5\%	540	0049	000					
R13	Res 4.7 K ohms 1/2W 5\%	540	0065	000					
R14	Res 47 K ohms 1/2W5\%	540	0089	000					

6.4 - AUDIO UNIT

SYMBOL	DESCRIPTION	GATES PART NO.			SYMBOL	DESCRIPTION	GATES PART NO		
C1	$\begin{aligned} & \text { Cap . } 025 \mathrm{uF} \\ & 100 \mathrm{~V} \end{aligned}$	508	0308	000	K 1	Relay	572	0131	000
$\begin{aligned} & \mathrm{C} 2 \\ & \text { thru } \\ & \text { C4 } \end{aligned}$	$\begin{aligned} & \text { Cap } 03 \mathrm{uF} \\ & 100 \mathrm{~V} \end{aligned}$	508	0307	000					
C5	Same as C1				L 1 thrus L4	Inductor 2.7103 .3 mH	492	0328	000
$\begin{aligned} & \text { C6 } \\ & \text { thru } \\ & \text { C8 } \end{aligned}$	Same as C2								
C9	$\begin{aligned} & \text { Cap } 1000 u F \\ & 16 \mathrm{~V} \end{aligned}$	522	0391	000	R 1 thru	Res 270 olins $1 /$ W 1\%	548	0139	000
C10	$\underset{1 \mathrm{kV}}{\text { Cap }} \mathbf{~} 005 \mathrm{uF} .$	516	0074	000	R4				
CR1	Diode 1N914	3	013		R5	Res 110 uhtus 1/2 W 1\%	548	0217	000
					R6 thru R9	Same as R 1			
J1	Not Used in Audio Unit				R 10	Same as R5			
$\begin{aligned} & \text { thru } \\ & \text { J } 10 \end{aligned}$					R11	Trim Pot 500 ohuns 1 W	552	0800	000

SECTION 6-PARTS LIST - CONT'D.

6.4 - AUDIO UNIT - CONT'D.

SYMBOL	DESCRIPTION	GATES PART NO.			SYMBOL	DESCRIPTION	GATES PART NO.		
R12	Res 10 K ohms 1/2 W 5\%	540	0073	000	S1	Switch SPDT Center Off	604	0336	000
R13	Res 600 ohins 1/2 W 1\%	548	0218	000					
R14	Same as R 13								
R15	Res 560 ohms 1/2W5\%	540	0043	000	T1 thru T2	Input Transformer (Matched Pair)	914	8783	001
R16	Sarne as R 15								
R17	Trim Pot 100 ohms 1 W	552	0797	000	XK1	Relay Sockel	404	0209	000
R18	Same as R17								
R19	Res 750 ohms 1/2W 5\%	540	0046	000					
R20	Res 300 ohms 1/2W5\%	540	0036	000					

6.5 - MODULATED OSCILLATOR

SYMBOL	DESCRIPTION	GATES PART NO.			SYMBOL	DESCRIPTION	GATES PART NO.		
C 1	Cap 100 UF 25 V	522	0246	000	C10B	Cap 47 pF 500 V ($98-108 \mathrm{MHz}$)	500	0817	000
C2	Cap . 001 uF 1 kV	516	0054	000					
C3	Same as C2				C10C	$\begin{aligned} & \text { Cap } 68 \mathrm{pF} 500 \mathrm{~V} \\ & (88-98 \mathrm{MHz}) \end{aligned}$	500	0821	000
C4	Not Used in Modulated Oscillator				C11A	Same as C 10A			
C5	$\begin{aligned} & \text { Cap } 27 \mathrm{pF} 500 \mathrm{~V} \\ & (88-98 \mathrm{MHz}) \end{aligned}$	500	0811	000	C118	Cap 47 pF 500 V $(88-98 \mathrm{MHz})$	516	0459	000
					C11B	Cap 47 pF 500 V (98-108 MHz)	500	0817	000
C5	Cap 18 pF 500 V ($98-108 \mathrm{MHz}$)	500	0807	000					
C6	Cap 15 uF 25 V	522	0240	000	C11C	Same as C10C			
C7	Same as C2				C12	Cap 18 pF 500 V	500	0807	000
C8	Same as C2				C13	Same as C2			
C9	Cap 2 uF 25 V	522	0233	000	$\begin{aligned} & \text { thru } \\ & \text { C15 } \end{aligned}$				
					C16	Cap 3 pF 500 V	500	0802	000
C10A	Cap 47 pF	516	0459	000	C17	Same as C2			
C1OB	Cap 47 pF 500 V	516	0459	000	C18	Cap 5 pF 500 V	500	0803	000

SECTION $6 \cdot$ PARTS LIST - CONT'D.

6.5 - MODULATED OSCILLATOR - CONT'D.

SECTION 6 - PARTS LIST - CONT'D.

6.5 - MODULATED OSCILLATOR - CONT'D.

SYMBOL	DESCRIPTION	GATES PART NO.			SYMBOL	DESCRIPTION	GATES PART NO.		
R21	Same as R20				R28	Res 180 ohms $1 / 2$ W 5\%	540	0031	000
R22	Res 39 ohms 1/4 W5	540	0015	000	R29	Pot 5 K ohms 3 W	552	0818	000
R23	Res 39 K ohms 1/4W5\%	540	0950	000	R30	Res 6.8 K ohms $1 / 2$ W 5%	540	0069	000
R24	Res 470 ohms $1 / 2$ W 5\%	540	0041		R31	Res 22 K ohms 1/4W.5\%	540	0944	000
R25	Res 10 ohms 1/2 W 5\%	540	0001	000					
R26 R27	Same as R2 Same as R9				$\begin{aligned} & \text { XQ1 } \\ & \text { thru } \\ & \text { XQ3 } \end{aligned}$	Socket, Transistor	404	0281	000

6.6 - AFC UNIT

SYMBOL	DESCRIFTION	GAT	S PAR	T NO.	SYMBOL	DESCRIPTION	GATES PART NO.		
C1	Cap 220 pF 500 V	500	0754	000	C26	Same as C7			
C2 thru C6	Cap . 001 uF 1 kV	516	0054	000	C27	Cap Variable 2.5 to 11 pF	518	0047	000
					C28	Cap 120 pF 500 V	500	0826	000
C7	Cap 05 UF 100 V	516	0435	000	C29	Same as C2			
C8	Not Used in AFC U				C30	Cap 82 pF 500 V	500	0823	000
C9	Same as C2								
C10	Not Used in AFC				C31	Cap . 01 uF 1 kV	516	0081	000
	Not				C32	Same as C2			
C11	Cap . 05 UF 100 V	516	0435	000	C33	Cap 100 uF 12 V	522	0210	000
C12	Same as C11				C34	Cap 1000 UF 10 V	522	0422	000
C13	Cap. 22 UF 100 V	516	0475	000					
C14	Same as C13								
C15	Cap 100 uF 50 V	522	0394	000	CR 1 thru CR 7	Diode 1N914	384	0318	000
C16 thru C22	Cap . 1 uF 100V	516	0453	000	CR8	Diode Zener 1N4733A	386	0135	000
C23	Cap 100 uF 25 V	522	0246	000	CR9	Same as CR1			
C24	Cap 250 uF 3 V	522	0164	000	CR 10	Varicap MV1626	528	0017	000

C25 Same as C23

SECTION 6-PARTS LIST - CONT'D.
6.6 - AFC UNIT - CONT'D.

SYMBOL	DESCRIPTION	GATES PART NO.			SYMBOL	DESCRIPTION	GATES PART NO.		
CR11	Same as CR 1				R3	Res 470 ohms 1/4 W 5\%	540	0904	000
CR 12	Same as, CR 1				R4	Res 2.2 K ohm 1/W W\%	540	0920	000
DS1		396	0060	000	R5	Res 10 K ohm 1/4W5\%	540	0936	000
					R6	Res 1.5 K ohms 1/4 W5\%	540	0916	000
J1	Connector, Coax	620	0355	000	R7	Same as R4			
J2	Connector, Power	610	0419	000	R8	Same as R2			
					R9	Same as R5			
					R10	Same as R5			
K1	Relay, DPDT 26.5 V .	578	0010	000	R11	Res 330 K ohms 1/4 W 5\%	540	0972	000
					R12	Same as R6			
$\begin{aligned} & \text { L1 } \\ & \text { thru } \\ & \text { L3 } \end{aligned}$	Inductor 100 uH	494	0233	000	R13	Res 1.3 K ohms 1/4 W 5\%	540	0915	000
					R14	Res 22 K ohms 1/4 W 5\%	540	0944	000
					R15	Not Used in AFC			
M1	Meter 0-50 uA DC	632	0663	000					
					R16	Res 39 K ohms 1/4 W 5\%	540	0950	000
					R17	Res 220 K ohms 1/4 W5\%	540	0968	000
Q1	Transistor 2N3702	380	0087	000	R18	Res 1 Kohm 1/4W5\%	540	0912	000
Q2	$\begin{aligned} & \text { Transistor } \\ & \text { 2N3053 } \end{aligned}$	380	0049	000	R19	Same as R 18			
Q3	Transistor 2N4037	380	0146	000	R20	Res 4.7 K ohms 1/4 W 5\%	540	0928	000
Q4	Transistor 2N3054	380	0041	000					
Q5	Transistor 2N3740	380	0066	000	R21 R22	Same as R16 Same as R17			
					R23	Same as R18			
					R24	Same as R18			
R1	Res 82 ohms 1/4 W5\%	540	0886	000	R25	Same as R20			
R2	Res 100 ohms 1/4W5\%	540	0888	000	R26	Res 47 K ohms 1/4W5\%	540	0952	000

6-8

SECTION 6-PARTS LIST - CONT'D.

6.6 - AFC UNIT - CONT'D.

Thermistor 5590002000
45TG-2

SECTION 6-PARTS LIST - CONT'D.

6.7 - FILTER ASSEMBLY

SYMBOL	DESCRIPTION	GATES PART NO.			SYMBOL	DESCRIPTION	GATES PART NO.		
$\begin{aligned} & \mathrm{C} 1 \\ & \text { thru } \\ & \mathrm{C} 20 \end{aligned}$	$\begin{aligned} & \text { Cap . } 001 \mathrm{uF} \\ & 500 \mathrm{~V} \end{aligned}$	516	0319	000	L1 thru L6	Choke 100 uH	494	0233	000
$\begin{aligned} & \text { C21 } \\ & \text { thru } \\ & \text { C24 } \end{aligned}$	$\begin{aligned} & \text { Cap } .025 u F \\ & 500 v \pm 20 \% \end{aligned}$	516	0393	000	L7 thru L10	Coil	814	4837	001
TB1	Terminal Board	614	0087	000	$\begin{aligned} & \text { L11 } \\ & \text { thru } \\ & \text { L20 } \end{aligned}$	Choke 3.3 uH	494	0110	000

6.8 - ISOLATION PAD, 3 dB

SYMBOL	DESCRIPTION	GATES PART NO.			SYMBOL	DESCRIPTION	GATES PART NO.		
J5	Receptacle "BNC"	612	0237	000	R1	Res 300 ohm 7 W	546	0229	000
16	Receptacle "N"	612	0233	000	R2	Res 20 ohm 5 W	546	0230	000
					R3	Same as R 1			

SECTION 6 - PARTS LIST - CONTD.

6.9 - STEREO GENERATOR

SECTION 6 - PARTS LIST - CONT'D.
6.9 - STEREO GENERATOR - CONT'D.

SYMBOL	DESCRIPTION	GATES PART NO.			SYMBOL	DESCRIPTION	GATES PART NO.		
L5	Same as L1				R16	Res 4.7 K ohms 1/4 W 5\%	540	0928	000
L6	Same as L3				R17	Res 2.4 K ohms 1/2 W 1\%	548	0211	000
					R18	Res 150 K ohms 1/4 W 5\%	540	0964	000
Q1	Transistor, FET	380	0060	000	R19	Res 51 K ohms 1/4 W 5\%	540	0953	000
$\begin{aligned} & \mathrm{Q} 2 \\ & \text { thru } \end{aligned}$	$\begin{aligned} & \text { Transistor } \\ & \text { 2N697 } \end{aligned}$	380	0098	000					
Q16					R20	Pot 10 K ohms 1 W	552	0795	000
R1	Res 5.1 Megohms $1 / 4$ W 5\%	540	1001	000	R21	Same as R8			
					R22	Res 2 K ohms $1 / 4$ W 5\%	540	0919	000
R2	Res 10 K ohms $1 / 4$ W 5\%	540	0936	000	R23	Res 510 ohms 1/4 W 5\%	540	0905	000
R3	Res 15 K ohms 1/4 W 5\%	540	0940	000	R24	Pot 50 K ohms $1 / 2 \mathrm{~W}$	550	0009	000
R4	Res 470 K ohms $1 / 4$ W 5\%	540	0976	000	R25	Same as R8			
R5	Res 390 ohms $1 / 4$ W 5\%	540	0902	000					
					R26	Res 3.3 K ohms 1/4 W5\%	540	0924	000
R6	Res 620 ohms $1 / 4$ W 5\%	540	0907	000	R27	Pot 5 K ohms $1 / 2 \mathrm{~W}$	550	0006	000
R7	Res 8.2 K ohms 1/4 W 5\%	540	0934	000	R28	Same as R8			
					R29	Same as R22			
R8	Res 100 K ohms $1 / 4$ W 5\%	540	0960	000	R30	Same as R4			
R9	Res 1 K ohm 1/4 W 5\%	540	0912	000					
					R31	Same as R8			
R10	Same as R2				R32	Res 22 K ohms 1/4 W 5\%	540	0944	000
R11	Same as R2				R 33	Pot 5 K ohms 1 W	552	0796	000
R12	Res 2.2 K ohms 1/4 W 5\%	540	0920	000	R34	Same as R8			
R13	Same as R8				R35	Same as R22			
R14	Res 100 ohms 1/4 W 5\%	540	0888	000					
R15	Same as R14				R36	Res 200 ohms $1 / 4$ W 5%	540	0895	000
					R37	Pot 100 ohms 1 W	552	0797	000
					R38	Same as R36			
					R39	Res 5.1 K ohms 1/4 W 5\%	540	0929	000
6-12					R40	Res 9.1 K ohms 1/4 W 5\%	540	0935	000

SECTION 6 -PARTS LIST - CONT'D.

6.9 - STEREO GENERATOR - CONT'D.

SYMBOL	DESCRIPTION	GAT	S PAR	T NO.	SYMBOL	DESCRIPTION	GAT	S PAR	T NO.
R41 thru R44	Res 4.75 K ohms 1/2W 1\%	548	0199	000	R71 R72	Same as R9 Same as R2			
R45	Not Used in Stereo Generator				$R 73$	Same as R4			
R46	Res 10 ohms 1/4 W 5\%	540	0864	000	R74 R75	Same as R59 Same as R12			
$R 47$	Same as R 46								
R48	Same as R 37				R76	Same as R4			
					R77	Same as R12			
R49 R50	Same as R9				R78	Res 10 Megohms 1/4W5\%	540	1008	000
R51	Same as R22				$R 79$	Res 500 ohms 1 W	552	0800	000
R52	Same as R23				R80		540	0914	000
R53	Same as R27					$1 / 4 \times 5 \%$			
R54	Same as R8				R81	Res 10 K ohms 1/4W5\%	540	0936	000
R55	Res 1.5 K ohms 1/4 W 5\%	540	0916	000	R82 thru	Res 100 ohms 1/2 W 1\%	548	0049	000
R56	Res 240 ohms 1/4 W 5\%	540	0897	000	$\begin{aligned} & \text { R85 } \\ & \text { R86 } \end{aligned}$	Same as R19			
R57	Same as R22				$R 87$	Same as R 19			
R58	Same as R3				R88	Res 100 ohms $1 / 2$ W 5\%	540	0025	000
R59	Res 120 K ohms 1/4W5\%	540	0962	000					
R60 R61	Same as R23				RT1	Thermistor 1 K ohm	559	0006	000
R62	Same as R23								
R63	Res Assembly	915	3312	001					
					S1	Switch Subminiature Toggle, SPDT	604	0366	000
R65	Pot Trim 1 K ohm 1 W	552	0802	000					
R66	Same as R9				T1	$\begin{aligned} & \text { Transformer } \\ & 19 \mathrm{kHz} \end{aligned}$	478	0269	000
$R 67$	Same as R4				T2	Transformer	478	0270	000
R68	Pot 1 K ohm 1/2 W	550	0004	000		$38 \mathrm{kHz}$			
					T3	Transformer	478	0026	000
					T4	Transformer	478	0220	000

SECTION 6-PARTS LIST - CONT'D.

6.9 - STEREO GENERATOR - CONT'D.

SYMBOL	DESCRIPTION	GATES PART NO.			SYMBOL	DESCRIPTION	GATES PART NO.		
TJ1	Test Point Jack White	612	0312	000	$X \mathrm{Y} 1$	Crystal Socket	404	0132	000
TJ2	Test Point Jack Black	612	0311	000					
TJ3	Same as TJ1				Y 1	Crystal 19 kHz	444	1129	000
X01	Transipad	404	0197	000					
$\begin{aligned} & \text { XO2 } \\ & \text { thru } \\ & \text { XO16 } \end{aligned}$	Transipad	404	0198	000					

XQ16

SECTION 6 - PARTS LIST - CONT’D.

6.10 - SCA GENERATOR

SYMBOL	DESCRIPTION	GATES PART NO.			SYMBOL	DESCRIPTION	GATES PART NO.		
C1	Cap .15 uF Mylar 100 V	508	0286	000	C27	Same as C16			
C2	Same as C1				C28	Cap 2 uF 25 V	522	0233	000
					C29	Same as C16			
C3 thru	$\begin{aligned} & \text { Cap } 100 \mathrm{pF} \\ & 100 \mathrm{~V} \end{aligned}$	500	0844	000	C30	Cap 25 uF 25 V	522	0242	000
C5					C31	Cap 50 uF 25 V	522	0244	000
C6	$\begin{aligned} & \text { Cap } 220 \mathrm{pF} \\ & 500 \mathrm{~V} \end{aligned}$	500	0873	000					
C7	$\begin{aligned} & \text { Cap } 62 \text { pF } \\ & 500 \vee 5 \% \end{aligned}$	500	0820	000	C32	Same as C31			
					C33	Cap 20 uF 50 V	522	0256	000
C8	Same as C3								
C9	Same as C6								
C10	Same as C7				CR1	Diode 1N270	384	0128	000
C11	$\begin{aligned} & \text { Cap } 100 \mathrm{pF} \\ & 500 \mathrm{~V} \end{aligned}$	500	0759	000	CR2	Same as CR1			
C12	Same as C11				CR3	Rectifier 1N2069	384	0018	000
C13	$\begin{aligned} & \text { Cap } 1500 \mathrm{pF} \\ & 500 \mathrm{~V} \end{aligned}$	500	0878	000	CR4	Same as CR3			
C14	Same as C13				J5	Receptacle	610	0419	000
C15	$\begin{aligned} & \text { Cap. } 1 \mathrm{uF} \\ & \text { Mylar } 100 \mathrm{~V} \end{aligned}$	508	0278	000					
C16	Cap 15 uF 25 V	522	0240	000					
C17	$\begin{aligned} & \text { Cap } .01 \mathrm{uF} \\ & \text { Mylar } 100 \mathrm{~V} \end{aligned}$	508	0298	000	L1 L2	Choke 4.7 mH Same as L1	494	0175	000
C18	Same as C17				L3	Choke Adjustable . $28-.65 \mathrm{mH}$	492	0321	000
					L4	Same as L3			
C19	$\begin{aligned} & \text { Cap } 250 \mathrm{pF} \\ & 500 \mathrm{~V} \end{aligned}$	500	0831	000	L5	Choke 2.2 mH	494	0165	000
C20	$\begin{aligned} & \text { Cap } 330 \mathrm{pF} \\ & 100 \mathrm{~V} \end{aligned}$	500	0874	000					
C21	Same as C20				L6	Coil Adjustable 8.20 mH	492	0322	000
C22	Same as C19				L7	Coil Adjustable 15.40 mH	492	0323	000
C23	$\begin{aligned} & \text { Cap } .01 \mathrm{uF} \\ & \text { Mylar } 100 \mathrm{~V} \end{aligned}$	508	0298	000	L8	Same as L6			
C24	Cap 25 uF 6 V	522	0178	000					
C25	Same as C24					Transistor	380	0098	000
C26	$\begin{aligned} & \text { Cap } 100 \text { uF } \\ & 12 v \end{aligned}$	522	0210	000	$\begin{aligned} & \text { thru } \\ & 06 \end{aligned}$				
					07	Transistor 2N1539	380	0016	000

SECTION 6 - PARTS LIST - CONTD.

SCA GENERATOR - CONT'D.

SYMBOL	DESCRIPTION	GATES PART NO.			SYMBOL	DESCRIPTION	GATES PART NO.		
R1	Res 1.8 K ohms 1/2 W 5\%	540	0055	000	R27	Same as R26			
R2	Res 1.5 K ohms 1/2W5\%	540	0053	000	R28	Res 2 K ohms 1/2 W 5\%	540	0056	000
					R29	Same as R28			
R3	Res 270 ohms 1/2 W 5\%	540	0035	000	R30	Pot Min 10 K ohm $1 / 2 \mathrm{~W}$	550	0007	000
R4	Same as R3					Linear Taper			
$\begin{aligned} & \text { R5 } \\ & \text { thru } \\ & \text { R8 } \end{aligned}$	Res 47 ohms 1/2 W 5\%	540	0017	000	R31	Res 6.8 K ohms 1/2 W 5\%	540	0069	000
					R32	Same as R30			
R9	Res 62 K ohms 1/2 W 5\%	540	0092	000	R33	Res 120 K ohms 1/2 W 5\%	540	0099	000
R10	Res 51 K ohms 1/2 W 5\%	540	0090	000	R34	Res 5.1 K ohms 1/2 W5\%	540	0066	000
R11	Res 100 K ohms 1/2 W 5\%	540	0097	000	R35	Same as R28			
R12	Res 82 K ohms 1/2W5\%	540	0095	000	R36	Res 1.1 K ohms 1/2W5\%	540	0050	000
R13	Res 4.7 K ohms 1/2 W 5\%	540	0065	000					
					R37	Res 680 ohms 1/2 W 5\%	540	0045	000
R14	Res 10 K ohms 1/2 W 5\%	540	0073	000	R38	Res 510 ohms	540	0042	000
R15	Res 1 K ohm 1/2W 5\%	540	0049	000	R39	Res 16 K ohms 1/2 W 5\%	540	0078	000
R16	Res 100 ohms 1/2W5\%	540	0025	000	R40	Same as R12			
R17	Same as R 10				R41	Same as R26			
R18	Same as R 11								
					R42	Res 12 K ohms 1/2 W 5\%	540	0075	000
R19	Same as R12				R43	Same as R28			
R20	Same as R13				R44	Res 3.3 K ohms 1/2 W5\%	540	0061	000
R21	Same as R14				R45	Same as R14			
R22	Same as R15								
R23	Same as R 16								
R24	Same as R 14				S1	Switch 4 Pos. Modified	600	0421	000

SECTION 6-PARTS LIST - CONT'D.

SCA GENERATOR - CONT'D.

SYMBOL	DESCRIPTION	GATES PART NO.			SYMBOL	DESCRIPTION	GATES PART NO.		
rI	Trallisforimer Inforl	478	0145	000	$\begin{aligned} & \mathrm{XO} 1 \\ & \times 02 \end{aligned}$	Transistor Socket Same as XQ1	404	0066	000
					$\begin{aligned} & \times 03 \\ & \text { thru } \\ & \times 06 \end{aligned}$	Transipad for TO-5 Case	404	0198	000
TJ1	Trest Puint Jack White	612	0312	000					
TJ2	Test Poirıl Jack Black	612	0311	000					

SECTION 7 - DRAWINGS

D SEE Chart
R Ri is mot useo in sto model te-3 excitea

unLess othenvise mote:

nore:

10W AMPLIFIER
FIG. 7.6
8384204001

4. INDUCTAMEE IN UH
3. CAPaCITANCE IN uF
2. RESISTACE IN OHIMS
2. RESISTORS ARE $1 / 2$ WATT $5 *$

UNLESS OTHERMISE NOTED:

HOME OFFICE AND MAIN PLANT
QUINCY, ILLINOIS 62301123 Hampshire Street
Phone: 222-8200, Area 217Telex: 403416
DISTRICT OFFICES
NEW YORK, NEW YORK 10016
130 Eas1 34th Street
Phone: 889-0790. Area 212
WASHINGTON, D. C. 20005
730 Federal Building
f 1522 K Street, N. W.
Phone: 223-5508, Area 202
LOS ANGELES, CALIFORNIA 90007
1945 South Figueroa
Phone: 747-7129, Area 213
SERVICE CENTERS
NEW YORK, NEW YORK 10016
130 East 34th Street
Phone: 889-0790, Area 212
HOUSTON, TEXAS 77027
4019 Richmond Avenue
Phone: 623-6655, Area 713
CANADIAN SALES
GATES (GANADA)
Division of Harris-Intertype (Canada) Lid.
MONTREAL OFFICE
212 Brunswick Boulevard
Pointe-Claire, Quebec, Canada
Phone: 696-3751, Area 514
TORQNTO OFFICE
19 Lośmill Road
Don Mills, Ontario, Canada
Phone: 447-7234, Area 416
INTERNATIONAL SALES OFFICE
NEW YORK, NEW YORK 10016
130 East 34 Street
Phone: 725-9800, Area 212
Cable: Garadcom
Telex: 127397

